a2 United States Patent

US009400998B2

(10) Patent No.: US 9,400,998 B2

Albers et al. 45) Date of Patent: Jul. 26, 2016
(54) CONSISTENT INTERFACE FOR (52) US.CL
MESSAGE-BASED COMMUNICATION CPC oo G060 40/12 (2013.12); GO6Q 10/067

ARRANGEMENT, ORGANISATIONAL
CENTRE REPLICATION REQUEST, AND
PAYMENT SCHEDULE

(75) Inventors: Leif Albers, Speyer (DE); Jan Brink,
Mannheim (DE); Mario Andy Mueller,
Muehlhausen (DE); Johannes Bechtold,
Muehlhausen (DE); Herbert Boche,
Neckargemuend (DE); Paul Tanzer,
Lelmen (DE); Joachim Gaffga,
Wiesloch (DE); Andre Von Rekowski,
Wiesloch (DE); Fabian Guenther,
Mauer (DE); Oliver Grande, Heidelberg
(DE); Matthias Richter, Sinsheim (DE);
Thomas Moser, Wiesloch (DE); Stefan
Kiefer, Speyer (DE); Christine
Hoerner, Karlsdorf-Neuthard (DE);
Christian Boehrer, Hoepfingen (DE);
Elena Gurevitch, Bad Schoenborn (DE);
Paola Sala, Heidelberg (DE); Benjamin
Klehr, Kuppenheim (DE); Pramod
Sidlaghatta Jaiprakash, Wiesloch (DE);
Jennifer Kroner, Wiesloch (DE)

(73) Assignee: SAP SE, Walldorf (DE)

(*) Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.C. 154(b) by 1013 days.

(21) Appl. No.: 13/535,635

(22) Filed: Jun. 28, 2012

(65) Prior Publication Data
US 2014/0006270 Al Jan. 2, 2014

(51) Int.CL
GOGF 15/16 (2006.01)
G06Q 40/00 (2012.01)

(Continued)

(2013.01); GO6Q 30/04 (2013.01); GO6Q 30/06
(2013.01); GO6Q 40/02 (2013.01); GOGF 8/10
(2013.01); GOG6F 8/30 (2013.01)
(58) Field of Classification Search

CPC ... GOG6F 8/10; GO6F 8/30; G06Q 10/067;
GO06Q 30/06
See application file for complete search history.
(56) References Cited

U.S. PATENT DOCUMENTS

3,223,321 A 12/1965 Baumgartner
5,126,936 A 6/1992 Champion et al.

(Continued)

FOREIGN PATENT DOCUMENTS

CN 1501296 6/2004
CN 1609866 4/2005
(Continued)
OTHER PUBLICATIONS

Notice of Allowance issued in U.S. Appl. No. 13/398,264 on Sep. 1,
2015; 7 pages.
(Continued)

Primary Examiner — Umar Cheema
Assistant Examiner — Anh Nguyen
(74) Attorney, Agent, or Firm — Fish & Richardson P.C.

(57) ABSTRACT

A business object model, which reflects data that is used
during a given business transaction, is utilized to generate
interfaces. This business object model facilitates commercial
transactions by providing consistent interfaces that are suit-
able for use across industries, across businesses, and across
different departments within a business during a business
transaction. In some operations, software creates, updates, or
otherwise processes information related to a message-based
communication arrangement, an organizational center repli-
cation request, and a payment schedule business object.

5 Claims, 44 Drawing Sheets

b
Overall Process —J
Create Suainess Creste
Seenanh o Dafals of Businese
Business Process Object Model
202 180
"Add Detels o Sleps of Gerarals Ineriace fom
Business Scenario o Busloess Object Mokl
Creats Prosess
interacton Model
104 112
Creata Use Inerlace
Massage Choroagraphy o Cresle
Messsge
108 115
Creste Send
Business Massage o Corplete
Documert Flow Transactcn
108 18

{ Rem

US 9,400,998 B2

Page 2
(51) Int.CL 7,131,069 Bl 10/2006 Rush et al.
G06Q 10/06 (2012.01) 7,206,768 Bl 4/2007 deGroeve et al.
7249157 B2 7/2007 Stewart et al.
G060 30/04 (2012.01) 7249195 B2 7/2007 Panec et al.
G060 30/06 (2012.01) 7,269,560 B2 9/2007 Spira et al.
G060 40/02 (2012.01) 7292965 Bl 11/2007 Mehta et al.
GOG6F 9/44 (2006.01) 7308,440 B2 12/2007 Rajarajan et al.
7321,864 Bl 1/2008 Gendler
. 7,340,410 Bl 3/2008 Vaillancourt et al.
References Cited 7363271 B2 4/2008 Morimoto
7379931 B2 5/2008 Morinville
U.S. PATENT DOCUMENTS 7383.990 B2 6/2008 Veit
. 7406358 B2 7/2008 Preiss
5,210,686 A 5/1993 Jernigan 7426,520 B2 9/2008 Gorelik et al.
g%‘s‘zigi i lg;}ggg (S:ll’lf:f;zneteil 7451,177 Bl 11/2008 Johnson et al.
1255, : 7454362 Bl 11/2008 Hayes et al.
g%é’ggg i lg;}gg‘s‘ %ﬁg‘gﬁgft al. 7481367 B2 1/2009 Fees et al.
5627764 A 5/1997 Schutzman et al. ;’2?2%;5 g% %883 g;fgit il
g;gg%g i %ggg g:il}f;f etal. 7,516,088 B2 4/2009 Johnson et al.
/787,) 7,523,466 B2 4/2009 DeAngelis
S A ooy Guskin etal 7,536,607 B2 5/2009 Wiseman et al.
5.966,695 A 10/1999 Melchione et al. Toyoee o 7000 Hoetal
5970465 A 10/1999 Dietrich et al. e '
970, 7,580,048 B2 82009 S t al.
g’gf‘iﬁj i 1%333 éfgfdeH 7617328 B2 11/2009 Lewis et al.
C 047264 A /2000 Fi‘zh; etu;fga 7,627,504 B2 12/2009 Brady et al.
047, : 7634482 B2 12/2009 Mukherjee et al.
6,052,525 A~ 4/2000 Carlson et al. 7641110 B2 1/2010 Hursta et al.
6,058378 A 572000 Clark et al. 7,657,466 B2 2/2010 Klingenberg et al.
2’83}}32 i %888 EZ‘I’;‘}’II(‘? etal. 7,657,575 B2 2/2010 Eberlein et al.
092, 7689711 B2 3/2010 Brouk et al.
6,104,393 A 8/2000 Santos-Gomez 7,711,680 B2 52010 Barnes-Leon et al.
g’}g’gg? i ggggg \ICIZZﬁEer wtal 7761428 B2 72010 Herbst et al.
1125, ~ 7783.568 Bl 82010 Fracchia et al.
6,154.732 A 11/2000 Tarbox Lo '
6,222,533 Bl 4/2001 Notani etal. JITI01 B2 92000 Balent
6,226,675 Bl 5/2001 Meltzer et al. 7.813.949 B2 102010 Grendel et al.
vt ggg;get . 7,853,491 B2 12/2010 Wittmer etal.
275, : 7,865,426 B2 1/2011 Volpert
6.308.163 Bl 10/2001 Du et al oo ayton et al.
6,311,165 Bl 10/2001 Couts et al. 789%.209 B2 22011 Spenceetal,
6,327,700 Bl 12/2001 Chen et al. 7962385 B2 6/2011 Falketal
6,332,163 Bl 12/2001 Bowman-Amuah oy : '
0332003 b1 1a200] Bowman A 8,082,243 B2 12/2011 Gorelik etal.
6375252 Bl 4/2002 Cheron et al. Slono8l B2 12012 Bisenson
6,401,101 Bl 6/2002 Britton et al. © 150798 B2 42012 Mactal
6,424,979 Bl 7/2002 Livingston et al. 8’185’430 B2 52012 Edwardé ot al
6,438,504 Bl 82002 Bowman-Amuah 8,234,375 B2 7/2012 Ghadialy et al.
0442620 Bl B0 Thatieetal 8,326,676 B2 12/2012 Rosectal.
446, : 8326795 B2 12/2012 Markovi
6:457.041 Bl 9/2002 Hutchison REA3903 12013 Bioreatam
6,496,825 Bl 12/2002 Klein et al. ' -
f : 8370272 B2 22013 Wicket et al.
e B o e 8,396,740 B2 3/2013 Koegler etal.
1523, 8396751 B2 3/2013 Becker et al.
6542912 B2 4/2003 Meltzer et al. o cexercta
6501260 Bl 712003 Schwarzhoff et al 8,396,768 Bl 3/2013 Kaisermayr et al.
6,643,660 BI 11/2003 Miller etal. $417503 B2 42013 Sehesit el
g;gg;% g% ‘5‘;3883 %’Iai’gkzt :t1~al 8423428 B2 42013 Grendel et al.
/738, : 8433,585 B2 4/2013 Sretal.
6,745,229 Bl 6/2004 Gobin et al. 8463666 B2 62013 Dorais et al.
2’3??25@ g% ;gggj Elvzrtlslet " 8473317 B2 6/2013 Santoso et al.
s B om0
6,868,370 Bl 3/2005 Burbridge et al.
6937092 Bl 22005 Benda of al 8,666,857 B2 3/2014 Roscoe et al.
6’957’230 B2 102005 Cameron efal 8,850,454 B2 9/2014 Boullery et al.
6’970,844 Bl 11/2005 Bierenbaum ’ 2001/0042032 A1 11/2001 Crawshaw et al.
6981292 B2 12/2005 Rush cfal 2001/0047372 Al 11/2001 Gorelik et al.
7’010’517 B2 3/2006 Blrd et al.' 2002/0013721 Al 1/2002 Dabbiere et al.
‘000, 2002/0026394 Al 2/2002 Savage et al.
7,020,594 Bl 3/2006 Chacon g
7,039,606 B2 5/2006 Hoffman et al. 2002/0046053 Al 4/2002 Hare et al.
7,055,132 B2 5/2006 Bogdan et al. 2002/0052754 Al 5/2002 Joyce et al.
7069278 B2 6/2006 Telkowski 2002/0054170 A1 52002 Rush et al.
7076449 B2 7/2006 Tsunenari et al. 2002/0065680 Al 5/2002 Kojima et al.

US 9,400,998 B2

Page 3

(56) References Cited 2005/0021366 Al 1/2005 Pool et al.

2005/0033588 Al 2/2005 Ruiz etal.

U.S. PATENT DOCUMENTS 2005/0038718 Al 2/2005 Barnes et al.

2005/0038744 A1 2/2005 Viijoen
2002/0072988 Al 6/2002 Aram 2005/0049903 Al 3/2005 Raja
2002/0087481 Al 7/2002 Harif 2005/0055369 Al 3/2005 Gorelik et al.
2002/0087483 Al 7/2002 Harif 2005/0065987 Al 3/2005 Telkowski et al.
2002/0099634 Al 7/2002 Coutts et al. 2005/0066240 Al 3/2005 Sykes et al.
2002/0107765 Al 8/2002 Walker 2005/0071262 Al 3/2005 Kobeh et al.
2002/0112171 Al 8/2002 Ginter et al. 2005/0080640 Al 4/2005 Bhaskaran et al.
2002/0138318 Al 9/2002 Ellis et al. 2005/0102250 Al 5/2005 Carr et al.
2002/0147668 Al 10/2002 Smith et al. 2005/0108085 Al 5/2005 Dakar et al.
2002/0152104 Al 10/2002 Ojha et al. 2005/0108168 Al 5/2005 Ha}lplnetal.
2002/0152145 Al 10/2002 Wanta et al. 2005/0108276 Al 5/2005 Sriram
2002/0156693 Al 10/2002 Stewart et al. 2005/0131947 Al 6/2005 Laub et al.
2002/0156930 Al 10/2002 Velasquez 2005/0149539 Al 7/2005 Cameron et al.
2002/0157017 Al 10/2002 Mi et al. 2005/0159997 Al 7/2005 John
2002/0165872 Al 11/2002 Meltzer et al. 2005/0171833 Al 82005 Jost etal.
2002/0169657 Al 11/2002 Singh et al. 2005/0182639 Al 82005 Dale
2002/0184070 Al 12/2002 Chen et al. 2005/0187797 Al 8/2005 Johnson
2002/0184147 A1 12/2002 Boulger 2005/0187866 Al 82005 Lee
2002/0186876 Al 12/2002 Jones et al. 2005/0194431 Al 9/2005 Fees et al.
2002/0194045 Al 12/2002 Shay etal. 2005/0194439 Al 9/2005 Zuerl et al.
2003/0004799 Al 1/2003 Kish 2005/0197849 Al 9/2005 Fotteler et al.
2003/0028451 Al 2/2003 Ananian 2005/0197851 Al 9/2005 Veit
2003/0041178 Al 2/2003 Brouk et al. 2005/0197878 Al 9/2005 Fotteler et al.
2003/0046639 Al 3/2003 Fai et al. 2005/0197881 Al 9/2005 Fotteler et al.
2003/0069648 Al 4/2003 Douglas et al. 2005/0197882 Al 9/2005 Fotteler et al.
2003/0083910 A1 5/2003 Sayal et al. 2005/0197886 Al 9/2005 Veit
2003/0083955 Al 5/2003 Ookura 2005/0197887 Al 9/2005 Zuerl et al.
2003/0084428 Al 5/2003 Agostini et al. 2005/0197896 Al 9/2005 Veit et al.
2003/0086594 Al 5/2003 Gross 2005/0197897 Al 9/2005 Veit et al.
2003/0097287 Al 5/2003 Franz et al. 2005/0197898 Al 9/2005 Veit et al.
2003/0120502 Al 6/2003 Robb et al. 2005/0197899 Al 9/2005 Veit et al.
2003/0120665 Al 6/2003 Fox et al. 2005/0197900 Al 9/2005 Veit
2003/0126077 Al 7/2003 Kantor et al. 2005/0197901 Al 9/2005 Veit et al.
2003/0167193 Al 9/2003 Jones et al. 2005/0197902 Al 9/2005 Veit
2003/0171962 Al 9/2003 Hirth et al. 2005/0197913 Al 9/2005 Grendel et al.
2003/0172007 Al 9/2003 Helmolt et al. 2005/0197928 Al 9/2005 Fotteler et al.
2003/0172135 Al 9/2003 Bobick et al. 2005/0197941 Al 9/2005 Veit
2003/0172343 Al 9/2003 Leymaster et al. 2005/0209732 Al 9/2005 Audimoolam et al.
2003/0177139 Al 9/2003 Cameron et al. 2005/0210406 Al 9/2005 Biwer et al.
2003/0195815 Al 10/2003 Lietal. 2005/0216321 Al 9/2005 Veit
2003/0204452 Al 10/2003 Wheeler 2005/0216359 Al 9/2005 Welter et al.
2003/0204637 Al 10/2003 Chong 2005/0216371 Al 9/2005 Fotteler et al.
2003/0208389 Al 11/2003 Kurihara et al. 2005/0216421 Al 9/2005 Barry etal.
2003/0212614 Al 11/2003 Chu et al. 2005/0222888 Al 10/2005 Hosoda et al.
2003/0216978 Al 11/2003 Sweeney et al. 2005/0222896 Al 10/2005 Rhyne etal.
2003/0220835 Al 11/2003 Barnes, Jr. 2005/0222945 Al 10/2005 Pannicke et al.
2003/0220875 Al 11/2003 Lamet al. 2005/0228821 Al 10/2005 Gold
2003/0229522 Al 12/2003 Thompson et al. 2005/0234754 Al 10/2005 Veit
2003/0229550 Al 12/2003 DiPrima et al. 2005/0240488 Al 10/2005 Grendel et al.
2003/0233295 Al 12/2003 Tozawa et al. 2005/0246240 Al 11/2005 Padilla
2003/0236748 Al 12/2003 Gressel et al. 2005/0256753 Al 11/2005 Veit et al.
2004/0002883 Al 1/2004 Andrews et al. 2005/0262130 Al 11/2005 Mohan
2004/0006653 Al 1/2004 Kamen et al. 2005/0278693 Al 12/2005 Brunell et al.
2004/0015366 Al 1/2004 Wiseman et al. 2006/0004934 Al 1/2006 Guldner et al.
2004/0024662 Al 2/2004 Gray et al. 2006/0005098 Al 1/2006 Lotz et al.
2004/0024862 Al 2/2004 Wall et al. 2006/0020515 Al 1/2006 Leeetal.
2004/0034577 Al 2/2004 Van Hoose et al. 2006/0026552 Al 2/2006 Mazzitelli et al.
2004/0039665 Al 2/2004 Ouchi 2006/0026586 Al 2/2006 Remmel et al.
2004/0073510 Al 4/2004 Logan 2006/0036941 Al 2/2006 Neil
2004/0083201 Al 4/2004 Sholl et al. 2006/0047574 Al 3/2006 Sundaram et al.
2004/0083233 Al 4/2004 Willoughby 2006/0047598 Al 3/2006 Hansen
2004/0122730 Al 6/2004 Tucciarone et al. 2006/0059005 Al 3/2006 Horn et al.
2004/0133445 Al 7/2004 Rajan et al. 2006/0059059 Al 3/2006 Horn et al.
2004/0138942 Al 7/2004 Pearson et al. 2006/0059060 Al 3/2006 Horn et al.
2004/0148227 Al 7/2004 Tabuchi et al. 2006/0069598 Al 3/2006 Schweitzer et al.
2004/0167894 Al 8/2004 Ziv 2006/0069629 Al 3/2006 Schweitzer et al.
2004/0172360 Al 9/2004 Mabrey et al. 2006/0069632 Al 3/2006 Kahn et al.
2004/0186891 Al 9/2004 Panec et al. 2006/0074728 Al 4/2006 Schweitzer et al.
2004/0187140 A1 9/2004 Aigner et al. 2006/0080338 Al 4/2006 Seubert et al.
2004/0220910 A1 11/2004 Zang et al. 2006/0085243 Al 4/2006 Cooper et al.
2004/0236660 Al 11/2004 Thomas et al. 2006/0085336 Al 4/2006 Seubert et al.
2004/0254945 Al 12/2004 Schmidt et al. 2006/0085412 Al 4/2006 Johnson et al.
2004/0267597 Al 12/2004 Kobrosly et al. 2006/0085450 Al 4/2006 Seubert et al.
2004/0267714 Al 12/2004 Frid et al. 2006/0089885 Al 4/2006 Finke et al.
2005/0005190 Al 1/2005 Ofiretal. 2006/0095373 Al 5/2006 Venkatasubramanian et al.
2005/0015273 Al 1/2005 Iyer 2006/0106824 Al 5/2006 Stuhec

US 9,400,998 B2

Page 4
(56) References Cited 2009/0006203 Al 1/2009 Fordyce et al.
2009/0063287 Al 3/2009 Tribout et al.
U.S. PATENT DOCUMENTS 2009/0077074 Al 3/2009 Hosokawa
2009/0083008 Al 3/2009 Allen et al.
2006/0184435 Al 8/2006 Mostowfi 2009/0089198 Al 4/2009 Kroutik
2006/0195563 Al 8/2006 Chapin et al. 2009/0094274 Al 4/2009 Gorelik et al.
2006/0212376 Al 9/2006 Snyder et al. 2009/0106133 Al 4/2009 Redmayne
2006/0265259 Al 11/2006 Diana et al. 2009/0144624 Al 6/2009 Barnes, Jr.
2006/0280302 Al 12/2006 Baumann et al. 2009/0164497 Al 6/2009 Steinmaier et al.
2006/0282360 Al 12/2006 Kahn et al. 2009/0171698 Al 7/2009 Suenderhauf et al.
2007/0016601 Al 1/2007 Cameron et al. 2009/0171716 Al 7/2009 Suenderhauf et al.
2007/0027742 A1 2/2007 Emuchay et al. 2009/0192926 Al 7/2009 Tarapata
2007/0027891 Al 2/2007 Schauerte et al. 2009/0193432 Al 7/2009 McKegney et al.
2007/0043583 Al 2/2007 Davulcu et al. 2009/0199172 Al 8/2009 Zhong et al.
2007/0055688 Al 3/2007 Blattner 2009/0222360 Al 9/2009 Schmitt et al.
2007/0061154 Al 3/2007 Markvoort et al. 2009/0222749 Al 9/2009 Marinescu et al.
2007/0067411 Al 3/2007 Angelov 2009/0248429 Al 10/2009 Doenig et al.
2007/0067753 Al 3/2007 Pocklington et al. 2009/0248430 Al 10/2009 Hubert et al.
2007/0078799 Al 4/2007 Huber-Buschbeck et al. 2009/0248431 Al 10/2009 Schoknecht et al.
2007/0100491 Al 5/2007 Burrell et al. 2009/0248463 Al 10/2009 Piochon et al.
2007/0112574 Al 5/2007 Greene 2009/0248473 Al 10/2009 Doenig et al.
2007/0118391 Al 5/2007 Malaney et al. 2009/0248487 Al 10/2009 Santoso et al.
2007/0124227 Al 5/2007 Dembo et al. 2009/0248547 Al 10/2009 Doenig et al.
2007/0129978 Al 6/2007 Shirasu et al. 2009/0248558 Al 10/2009 Hollberg et al.
2007/0132585 Al 6/2007 Llorca et al. 2009/0248586 Al 10/2009 Kaisermayr et al.
2007/0150387 Al* 6/2007 Seubert G06Q 10/10 2009/0248698 Al 10/2009 Rehmann
705/31 2009/0249358 Al 10/2009 Schuette
2007/0150836 Al 6/2007 Deggelmann et al. 2009/0249362 Al 10/2009 Lindemann et al.
2007/0156428 Al 7/2007 Brecht-Tillinger et al. 2009/0254971 Al 10/2009 Herz et al.
2007/0156545 Al 7/2007 Lin 2009/0271245 Al 10/2009 Joshi et al.
2007/0156552 Al 7/2007 Manganiello 2009/0276338 Al 11/2009 Masermann et al.
2007/0156690 Al 7/2007 Moser et al. 2009/0281865 Al 11/2009 Stoitsev
2007/0165622 Al 7/2007 O’Rourke et al. 2009/0300544 Al 12/2009 Psenka et al.
2007/0174811 Al 7/2007 Kaetker et al. 2009/0300578 Al 12/2009 Neil
2007/0208698 Al 9/2007 Brindley et al. 2009/0326988 Al 12/2009 Barth etal.
2007/0214065 Al 9/2007 Kahlon et al. 2009/0327009 Al 12/2009 Schmitt et al.
2007/0219864 Al 9/2007 Vollrath et al. 2009/0327105 Al 12/2009 Moussa et al.
2007/0219941 Al 9/2007 Schnurr et al. 2009/0327106 Al 12/2009 Bartelt et al.
2007/0225949 A1 9/2007 Sundararajan et al. 2010/0001834 Al 1/2010 Brunswig et al.
2007/0226066 Al 9/2007 Brunner et al. 2010/0014510 Al 1/2010 Boreli et al.
2007/0226090 Al 9/2007 Stratton 2010/0070391 Al 3/2010 Storr et al.
2007/0233574 Al 10/2007 Koegler et al. 2010/0070395 Al 3/2010 Elkeles et al.
2007/0255639 Al 11/2007 Seifert 2010/0106555 Al 4/2010 Mneimneh et al.
2007/0265860 Al 11/2007 Herrmann et al. 2010/0131379 Al 52010 Dorais et al.
2007/0265862 Al 11/2007 Freund et al. 2010/0131394 Al 5/2010 Rutsch et al.
2007/0288250 Al 12/2007 Lemcke et al. 2010/0153240 Al 6/2010 Bold et al.
2007/0294159 Al 12/2007 Cottle 2010/0153297 Al 6/2010 Haaf et al.
2007/0295803 Al 12/2007 Levine et al. 2010/0161366 Al 6/2010 Clemens et al.
2008/0005012 Al 1/2008 Deneef 2010/0161425 Al 6/2010 Sideman
2008/0016242 Al 1/2008 Panec et al. 2010/0169888 Al 7/2010 Hare et al.
2008/0021754 Al 1/2008 Horn et al. 2010/0191894 Al 7/2010 Bartley GOG6F 11/201
2008/0027835 Al 1/2008 LeMasters et al. 711/5
2008/0027836 Al 1/2008 Chapin 2010/0198631 Al 82010 Edwards et al.
2008/0040243 Al 2/2008 Chang et al. 2010/0217645 Al 8/2010 Jin et al.
2008/0046104 Al 2/2008 Van Camp et al. 2010/0217820 Al 82010 Brouk et al.
2008/0046421 Al 2/2008 Bhatia et al. 2010/0218245 Al 82010 Brouk et al.
2008/0065443 Al 3/2008 Gorur et al. 2010/0241729 Al 9/2010 Angelov
2008/0082422 Al 4/2008 Barrett 2010/0306536 Al 12/2010 Brouk et al.
2008/0120129 AL* 5/2008 Seubert G06Q 10/06 2011/0035323 Al 22011 Hamilton et al.
705/35 2011/0046775 Al 2/2011 Bailey et al.
2008/0120190 Al 5/2008 Joao et al. 2011/0077982 Al 3/2011 Roscoe et al.
2008/0120204 Al 5/2008 Conner et al. 2011/0077999 Al 3/2011 Becker et al.
2008/0120206 Al 5/2008 Weiler et al. 2011/0078048 Al 3/2011 Becker et al.
2008/0120313 Al 5/2008 O’Brien et al. 2011/0088000 Al ~ 4/2011 Mackay
2008/0133303 Al 6/2008 Singh et al. 2011/0099542 Al 4/2011 Branda GOGF 8/443
2008/0144791 Al 6/2008 Hariri etal. 717/154
2008/0154969 Al 6/2008 DeBie 2011/0153505 Al 6/2011 Brunswig et al.
2008/0162266 Al 7/2008 Griessmann et al. 2011/0153767 Al 6/2011 Coldicott et al.
2008/0184265 Al 7/2008 Kasi et al. 2011/0196717 Al 82011 Colliat et al.
2008/0189360 Al 8/2008 Kiley et al. 2011/0276360 Al 112011 Barth et al.
2008/0196108 Al 8/2008 Dent et al. 2011/0276636 Al 11/2011 Cheng et al.
2008/0208805 Al 8/2008 Wang et al. 2011/0307289 Al 12/2011 Hosur et al.
2008/0215354 Al 9/2008 Halverson et al. 2011/0307295 Al 12/2011 Steiert et al.
2008/0243578 Al 10/2008 Veit 2011/0307398 Al 12/2011 Reinhardt et al.
2008/0250405 Al 10/2008 Farhangi et al. 2011/0307409 Al 12/2011 Schiffetal.
2008/0263051 Al 10/2008 Kanyetzny et al. 2012/0089509 Al 4/2012 Kasriel et al.
2008/0288317 Al 11/2008 Kakar 2012/0117000 Al 5/2012 Haaf et al.
2008/0300962 Al 12/2008 Cawston et al. 2012/0118983 Al 5/2012 Harris
2008/0314981 Al 12/2008 Eisenson 2012/0166328 Al 6/2012 Spirgel

US 9,400,998 B2
Page 5

(56) References Cited
U.S. PATENT DOCUMENTS

2012/0191604 Al
2012/0296919 Al
2013/0021978 Al
2013/0124232 Al
2013/0144741 Al
2013/0159146 Al
2014/0058905 Al
2014/0156763 Al

7/2012 Allin et al.
11/2012 Sinha et al.
1/2013 Tamura et al.
5/2013 Zhao et al.
6/2013 Becker et al.
6/2013 Schmitt et al.
2/2014 Kahn et al.
6/2014 Dubetz et al.

FOREIGN PATENT DOCUMENTS

CN 1632806 6/2005

CN 1765138 4/2006

CN 1767537 5/2006

CN 101174957 5/2008

CN 101288092 10/2008

WO WO 2008/005102 1/2008
OTHER PUBLICATIONS

Notice of Allowance issued in U.S. Appl No. 13/398,269 on Aug. 27,
2015; 15 pages.

Notice of Allowance issued in U.S. Appl. No. 13/535,484 on Sep. 23,
2015; 11 pages.

Office Action issued in U.S. Appl. No. 13/398,264 on Jun. 16, 2015;
20 pages.

Office Action issued in U.S. Appl. No. 13/535,618 on Jul. 2,2015; 15
pages.

Office Action issued in U.S. Appl. No. 13/535,667 on Aug. 17,2015,
16 pages.

Office Action issued in U.S. Appl. No. 13/535,722 on Jul. 24, 2015,
13 pages.

Office Action issued in U.S. Appl. No. 13/591,798 on Aug. 27, 2015,
9 pages.

Office Action issued in U.S. Appl. No. 13/832,344 on Aug. 14,2015,
15 pages.

Office Action issued in U.S. Appl. No. 13/832,642 on Aug. 21, 2015;
24 pages.

Office Action issued in U.S. Appl. No. 13/832,951 on Jul. 23, 2015;
15 pages.

Office Action issued in U.S. Appl. No. 14/165,243 on Sep. 17,2015,
4 pages.

“Bank for International Settlements, Overview of The New Basel
Capital Accord”, 18 pages; Apr. 2003.

Aziz, Jeff et al. “Calculating Credit Exposure and Credit Loss: A
Case Study”; ALGO Research Quarterly, vol. 1, No. 1, Sep. 1998; 16
pages.

Baltopoulos, Ioannis, “Introduction to Web Services” Dept. of Com-
puter Science, Imperial College London, CERN School of Comput-
ing (iCSC), 41 pages; 2005.

Basel Committee on Banking Supervision, Consultative Document,
Overview of the New Basel Capital Accord; Bank for International
Settlements; 18 pages; Apr. 2003.

Business Object DTF, Common Business Objects, Ver 1.5; OMG
Document bom; Framingham Corporate Center, Framingham, MA;
20 pages; Dec. 4, 1997.

Chinnapen-Rimer, Subendi et al.; “An XML Model for Use Across
heterogeneous Client-Server Applications,” IEEE Transactions on
Intrumentastion and Measurement, WOct. 2008, vol. 50, No. 10, pp.
2128-2135.

Chou et al. “Web Services for Service-Oriented Communication”,
International Conference on Collaborative Computing: Networking,
Applications and Worksharing, CollaborateCom 2006, pp. 1-8, 2006.
Intersystems, Evaluating Integration Software, Ensemble White
Paper, 2007, http://www.intersystems.com/ensemble/whitepapers/
pdf/evaluating-integration-software.pdf.

Kyal, Anat et al. “Integrating and customizing Heterogeneous e-com-
merce applications”, Computer Science Department, Tel Aviv Uni-
versity, Raman Aviv, 69978, Israel, Pub. Aug. 2, 2001, 23 pages.

Masoodian et al., “Recoled: A Group-aware Collaborative Text Edi-
tor for Capturing Document History” in Proceedings of IADIS Inter-
national Conference on WWW/Internet, Lisbon, Portugal, Oct.
19-22, International Associate for Development of the Information
Socieity, vol. 1,323-330. (Date: 2005).

Nemuraite, Lina; “Business Object Modeling Framework for Dis-
tributed Enterprise”, Kaunas University of Technology, Launas,
Lithuania, Jan. 1999; pp. 189-202.

Oracle Application Integration Architecture Enterprise Business
Objects (EBO) Concepts—Concepts, Structure, Terminologies and
Design Rules, An Oracle White Paper; 29 pages; Aug. 2009.
Communication Pursuant to Article 94(3) issued in European Appli-
cation No. 06765436.8 on Jun. 9, 2015; 5 pages.

Summons to attend oral proceedings pursuant to Rule 115(1) EPC re
EP Application No. 05766672.9-1955/1782356 dated Mar. 10, 2014;
5 pages.

Notice of Allowance issued in U.S. Appl. No. 11/145,464 on Sep. 26,
2013; 8 pages.

Notice of Allowance issued in U.S. Appl. No. 11/155,368 on Dec. 6,
2013; 11 pages.

Notice of Allowance issued in U.S. Appl. No. 11/155,368 on Jun. 13,
2013; 9 pages.

Notice of Allowance issued in U.S. Appl. No. 11/364,538 on Oct. 24,
2013; 9 pages.

Notice of Allowance issued in U.S. Appl. No. 11/640,422 on Apr. 23,
2012; 8 pages.

Notice of Allowance issued in U.S. Appl. No. 11/803,178 on May 27,
2014; 8 pages.

Notice of Allowance issued in U.S. Appl. No. 11/864,811 on Mar. 19,
2013; 9 pages.

Notice of Allowance issued in U.S. Appl. No. 11/864,832 on Jul. 3,
2013; 14 pages.

Notice of Allowance issued in U.S. Appl. No. 11/864,866 on Jan. 25,
2013; 7 pages.

Notice of Allowance issued in U.S. Appl. No. 11/864,871 on Aug. 14,
2013; 20 pages.

Notice of Allowance issued in U.S. Appl. No. 12/059,867 on Jul. 17,
2013; 22 pages.

Notice of Allowance issued in U.S. Appl. No. 12/059,971 on Aug. 12,
2014; 11 pages.

Notice of Allowance issued in U.S. Appl. No. 12/060,144 on Mar. 20,
2013; 12 pages.

Notice of Allowance issued in U.S. Appl. No. 12/060,149 on Jul. 9,
2013; 18 pages.

Notice of Allowance issued in U.S. Appl. No. 12/060,155 on Jan. 11,
2013; 5 pages.

Notice of Allowance issued in U.S. Appl. No. 12/060,178 on Feb. 14,
2013; 7 pages.

Notice of Allowance issued in U.S. Appl. No. 12/147,378 on Dec. 6,
2013; 9 pages.

Notice of Allowance issued in U.S. Appl. No. 12/147,414 on Jun. 19,
2013; 23 pages.

Notice of Allowance issued in U.S. Appl. No. 12/147,449 on Sep. 17,
2013; 9 pages.

Notice of Allowance issued in U.S. Appl. No. 12/323,116 on Jun. 27,
2013; 8 pages.

Notice of Allowance issued in U.S. Appl. No. 12/323,139 on Feb. 8,
2013; 9 pages.

Notice of Allowance issued in U.S. Appl. No. 12/815,618 on May 7,
2013; 8 pages.

Notice of Allowance issued in U.S. Appl. No. 12/815,802 on Nov. 27,
2012; 9 pages.

Notice of Allowance issued in U.S. Appl. No. 12/815,869 on May 20,
2015; 19 pages.

Notice of Allowance issued in U.S. Appl. No. 13/186,361 on Jun. 10,
2013; 11 pages.

Notice of Allowance issued in U.S. Appl. No. 13/192,548 on Jan. 10,
2014; 8 pages.

Notice of Allowance issued in U.S. Appl. No. 13/192,553 on May 1,
2013; 21 pages.

Notice of Allowance issued in U.S. Appl. No. 13/192,574 on Jun. 14,
2013; 11 pages.

US 9,400,998 B2
Page 6

(56) References Cited

OTHER PUBLICATIONS

Notice of Allowance issued in U.S. Appl. No. 13/192,599 on Sep. 12,
2013; 14 pages.

Notice of Allowance issued in U.S. Appl. No. 13/192,612 on Oct. 16,
2013; 16 pages.

Notice of Allowance issued in U.S. Appl. No. 13/349,477 on Oct. 25,
2013; 12 pages.

Notice of Allowance issued in U.S. Appl. No. 13/398,191 on Feb. 3,
2014; __ pages.

Notice of Allowance issued in U.S. Appl. No. 13/398,200 on Nov. 6,
2014; 7 pages.

Notice of Allowance issued in U.S. Appl. No. 13/398,228 on Feb. 16,
2012; 7 pages.

Notice of Allowance issued in U.S. Appl. No. 13/398,331 on Feb. 16,
2012; 7 pages.

Notice of Allowance issued in U.S. Appl. No. 13/535,403 on Sep. 12,
2014; 7 pages.

Notice of Allowance issued in U.S. Appl. No. 13/535,418 on Sep. 25,
2014; 12 pages.

Notice of Allowance issued in U.S. Appl. No. 13/535,419 on Feb. 11,
2014; 9 pages.

Notice of Allowance issued in U.S. Appl. No. 13/535,667 on Jun. 10,
2014; 9 pages.

Notice of Allowance issued in U.S. Appl. No. 13/535,864 on Sep. 24,
2013; 8 pages.

Notice of Allowance issued in U.S. Appl. No. 13/591,780 on Feb. 10,
2015, 8 pages.

Notice of Allowance issued in U.S. Appl. No. 13/591,804 on Apr. 8,
2015; 9 pages.

Notice of Allowance issued in U.S. Appl. No. 13/754,608 on Jul. 9,
2013; 12 pages.

Notice of Allowance issued in U.S. Appl. No. 13/770,508 on Mar. 26,
2014; 8 pages.

Notice of Allowance issued in U.S. Appl. No. 13/832,301 on May 26,
2015; 14 pages.

Notice of Allowance issued in U.S. Appl. No. 13/832,561 on Jun. 1,
2015; 14 pages.

Office Action issued in U.S. Application No. 13/535,730 on Mar. 20,
2014; 15 pages.

Office Action issued in U.S. Appl. No. 13/535,670 on Jun. 24, 2013,
13 pages.

Office Action issued in U.S. Appl. No. 11/803,178 on Nov. 22, 2013,
7 pages.

Office Action issued in U.S. Appl. No. 12/059,804 on Aug. 1, 2014,
19 pages.

Office Action issued in U.S. Appl. No. 12/059,860 on Mar. 20, 2014,
24 pages.

Office Action issued in U.S. Appl. No. 12/059,860 on Sep. 17,2013,
18 pages.

Office Action issued in U.S. Appl. No. 12/060,054 on Dec. 20, 2013,
14 pages.

Office Action issued in U.S. Appl. No. 12/571,576 on Aug. 1, 2014,
15 pages.

Office Action issued in U.S. Appl. No. 12/815,576 on Feb. 15,2013,
13 pages.

Office Action issued in U.S. Appl. No. 12/815,698 on Aug. 15,2014,
14 pages.

Office Action issued in U.S. Appl. No. 12/815,750 on May 7, 2015,
81 pages.

Office Action issued in U.S. Appl. No. 12/815,750 on Dec. 26, 2014,
75 pages.

Office Action issued in U.S. Appl. No. 12/815,750 on Feb. 21, 2013,
67 pages.

Office Action issued in U.S. Appl. No. 12/815,869 on Feb. 15,2013,
27 pages.

Office Action issued in U.S. Appl. No. 12/815,869 on Jul. 18, 2013,
27 pages.

Office Action issued in U.S. Appl. No. 12/815,869 on Oct. 27,2014,
31 pages.

Office Action issued in U.S. Appl. No.
15 pages.

Office Action issued in U.S. Appl. No.
17 pages.

Office Action issued in U.S. Appl. No.
14 pages.

Office Action issued in U.S. Appl. No.
8 pages.

Office Action issued in U.S. Appl. No.
7 pages.

Office Action issued in U.S. Appl. No.
pages.

Office Action issued in U.S. Appl. No.
12 pages.

Office Action issued in U.S. Appl. No.
10 pages.

Office Action issued in U.S. Appl. No.
26 pages.

12/815,911 on Feb. 25, 2013;
12/816,268 on Apr. 26, 2013;
12/816,268 on Mar. 21, 2014,
12/823,996 on Apr. 25, 2013,
12/823,996 on Mar. 22, 2013,
13,535,587 on Dec. 6,2013,9
13,535,667 on Jun. 26, 2013;
13/186,361 on Feb. 26, 2013,

13/192,543 on Dec. 13, 2012;

Office Action issued in U.S. Appl. No. 13/192,548 on Jun. 7, 2013; 15

pages.

Office Action issued in U.S. Appl. No.
23 pages.

Office Action issued in U.S. Appl. No
11 pages.

Office Action issued in U.S. Appl. No.
10 pages.

Office Action issued in U.S. Appl. No.
21 pages.

Office Action issued in U.S. Appl. No
37 pages.

Office Action issued in U.S. Appl. No.
5 pages.

Office Action issued in U.S. Appl. No.
11 pages.

Office Action issued in U.S. Appl. No.
29 pages.

13/192,553 on Feb. 11, 2013,
. 13/192,555 on Mar. 1, 2013;
13/192,555 on Sep. 13,2013;
13/192,564 on Apr. 22, 2013,
. 13/192,564 on Nov. 6, 2013;
13/192,574 on Apr. 30, 2013;
13/192,590 on Oct. 18, 2013;

13/192,599 on Mar. 21, 2013;

Office Action issued in U.S. Appl. No. 13/218,876 on Apr. 5,2013; 10

pages.
Office Action issued in U.S. Appl. No
14 pages.

. 13/218,876 on Jul. 16, 2013;

Office Action issued in U.S. Appl. No. 13/218,876 on Oct. 4, 2013; 24

pages.

Office Action issued in U.S. Appl. No.
6 pages.

Office Action issued in U.S. Appl. No.
5 pages.

Office Action issued in U.S. Appl. No.
7 pages.

Office Action issued in U.S. Appl. No
6 pages.

Office Action issued in U.S. Appl. No.
9 pages.

Office Action issued in U.S. Appl. No.

9 pages.

Office Action issued in U.S. Appl. No.
8 pages.

Office Action issued in U.S. Appl. No
20 pages.

Office Action issued in U.S. Appl. No.
8 pages.

Office Action issued in U.S. Appl. No.
14 pages.

Office Action issued in U.S. Appl. No.
pages.

Office Action issued in U.S. Appl. No.
12 pages.

Office Action issued in U.S. Appl. No.
14 pages.

Office Action issued in U.S. Appl. No.
10 pages.

Office Action issued in U.S. Appl. No.
14 pages.

13/340,510 on Mar. 17, 2015;
13/340,510 on Aug. 14, 2014;
13/340,510 on Oct. 11, 2013;
. 13/349,477 on Jul. 22, 2013;
13/398,191 on Oct. 15,2013;
13/398,200 on Jun. 25, 2014;
13/398,228 on Oct. 17,2013;
. 13/398,269 on May 7, 2015;
13/398,331 on Oct. 24, 2013;
13/398,374 on Apr. 29, 2015;
13/398,374 on Apr. 4, 2014; 6
13/398,374 on Oct. 10, 2014;
13/398,438 on Dec. 19, 2014,
13/535,406 on Apr. 23, 2014,

13/535,419 on Apr. 19, 2013;

US 9,400,998 B2
Page 7

(56) References Cited
OTHER PUBLICATIONS

Office Action issued in U.S. Appl. No. 13/535,419 on Oct. 22,2013,
11 pages.

Office Action issued in U.S. Appl. No. 13/535,433 on May 22, 2015,
18 pages.

Office Action issued in U.S. Appl. No. 13/535,433 on Aug. 2, 2013,
11 pages.

Office Action issued in U.S. Appl. No. 13/535,433 on Mar. 4, 2013,
11 pages.

Office Action issued in U.S. Appl. No. 13/535,433 on Nov. 21, 2014,
14 pages.

Office Action issued in U.S. Appl. No. 13/535,435 on Dec. 16, 2013,
15 pages.

Office Action issued in U.S. Appl. No. 13/535,435 on Jun. 21, 2013,
13 pages.

Office Action issued in U.S. Appl. No. 13/535,443 on Feb. 20, 2015,
12 pages.

Office Action issued in U.S. Appl. No. 13/535,443 on Sep. 19, 2014,
9 pages.

Office Action issued in U.S. Appl. No. 13/535,446 on Jan. 21, 2014,
14 pages.

Office Action issued in U.S. Appl. No. 13/535,446 on Jun. 25, 2014,
18 pages.

Office Action issued in U.S. Appl. No. 13/535,453 on Dec. 20, 2013,
21 pages.

Office Action issued in U.S. Appl. No. 13/535,453 on Jul. 5,2013; 22
pages.

Office Action issued in U.S. Appl. No. 13/535,477 on Apr. 27,2015,
7 pages.

Office Action issued in U.S. Appl. No. 13/535,477 on Jul. 21, 2014,
13 pages.

Office Action issued in U.S. Appl. No. 13/535,483 on Jun. 23, 2014,
10 pages.

Office Action issued in U.S. Appl. No. 13/535,483 on Nov. 21, 2013,
10 pages.

Office Action issued in U.S. Appl. No. 13/535,484 on Feb. 23, 2015,
8 pages.

Office Action issued in U.S. Appl. No. 13/535,512 on Jul. 5,2013; 10
pages.

Office Action issued in U.S. Appl. No. 13/535,512 on Oct. 25,2013,
16 pages.

Office Action issued in U.S. Appl. No. 13/535,521 on Apr. 16,2013,
16 pages.

Office Action issued in U.S. Appl. No. 13/535,521 on Aug. 30, 2013,
15 pages.

Office Action issued in U.S. Appl. No. 13/535,546 on Aug. 29, 2014,
14 pages.

Office Action issued in U.S. Appl. No. 13/535,587 oin Mar. 20, 2014,
11 pages.

Office Action issued in U.S. Appl. No. 13/535,600 on Dec. 5, 2013,
16 pages.

Office Action issued in U.S. Appl. No. 13/535,600 on Jun. 21, 2013,
14 pages.

Office Action issued in U.S. Appl. No. 13/535,625 on Aug. 15,2013,
22 pages.

Office Action issued in U.S. Appl. No. 13/535,625 on Dec. 10, 2013,
__pages.

Office Action issued in U.S. Appl. No. 13/535,648 on Dec. 16, 2013,
16 pages.

Office Action issued in U.S. Appl. No. 13/535,648 on Jun. 21, 2013,
14 pages.

Office Action issued in U.S. Appl. No. 13/535,664 on Aug. 11,2014,
16 pages.

Office Action issued in U.S. Appl. No. 13/535,664 on Dec. 31, 2014,
13 pages.

Office Action issued in U.S. Appl. No. 13/535,667 on Feb. 25,2015,
6 pages.

Office Action issued in U.S. Appl. No. 13/535,667 on Dec. 26, 2012,
9 pages.

Office Action issued in U.S. Appl. No. 13/535,667 on Sep. 22,2014,
5 pages.

Office Action issued in U.S. Appl. No. 13/535,670 on Dec. 17,2013,
15 pages.

Office Action issued in U.S. Appl. No. 13/535,674 on Dec. 16, 2013,
19 pages.

Office Action issued in U.S. Appl. No. 13/535,674 on Jul. 3,2013; 17
pages.

Office Action issued in U.S. Appl. No. 13/535,703 on Feb. 28, 2014,
15 pages.

Office Action issued in U.S. Appl. No. 13/535,703 on Oct. 31, 2013,
11 pages.

Office Action issued in U.S. Appl. No. 13/535,722 on Dec. 17,2013,
11 pages.

Office Action issued in U.S. Appl. No. 13/535,723 on Apr. 24, 2013,
16 pages.

Office Action issued in U.S. Appl. No. 13/535,723 on Aug. 23, 2013,
16 pages.

Office Action issued in U.S. Appl. No. 13/535,730 on Jul. 15,2014,
17 pages.

Office Action issued in U.S. Appl. No. 13/535,730 on Sep. 23, 2014,
17 pages.

Office Action issued in U.S. Appl. No. 13/535,750 on Nov. 6, 2013,
20 pages.

Office Action issued in U.S. Appl. No. 13/535,831 on Apr. 2,2014; 16
pages.

Office Action issued in U.S. Appl. No. 13/535,831 on Jul. 15,2014,
18 pages.

Office Action issued in U.S. Appl. No. 13/535,831 on Sep. 24, 2014,
20 pages.

Office Action issued in U.S. Appl. No. 13/535,854 on Aug. 1, 2014,
19 pages.

Office Actionissued in U.S. Appl. No. 13/535,854 on Feb. 5,2014; 10
pages.

Office Action Issued in U.S. Appl. No. 13/535,864 on May 10, 2013,
9 pages.

Office Action issued in U.S. Appl. No. 13/591,756 on Jun. 20, 2014,
9 pages.

Office Action issued in U.S. Appl. No. 13/591,756 on Apr. 9, 2015; 8
pages.

Office Action issued in U.S. Appl. No. 13/591,756 on Nov. 14,2014,
4 pages.

Office Action issued in U.S. Appl. No. 13/591,780 on Jun. 25, 2014,
pages.

Office Action issued in U.S. Appl. No. 13/591,780 on Oct. 16, 2014,
5 pages.

Office Action issued in U.S. Appl. No. 13/591,798 on Feb. 13, 2015,
22 pages.

Office Action issued in U.S. Appl. No. 13/591,798 on Aug. 1, 2014,
24 pages.

Office Action issued in U.S. Appl. No. 13/591,804 on Jan. 2,2015; 10
pages.

Office Action issued in U.S. Appl. No. 13/591,804 on Jun. 23, 2014,
5 pages.

Office Action issued in U.S. Appl. No. 13/591,804 on Sep. 24, 2014,
9 pages.

Office Action issued in U.S. Appl. No. 13/626,352 on Mar. 13, 2015,
10 pages.

Office Action issued in U.S. Appl. No. 13/703,471 on Mar. 10, 2015,
14 pages.

Office Action issued in U.S. Appl. No. 13/703,471 on Sep. 10, 2014,
19 pages.

Office Action issued in U.S. Appl. No. 13/754,608 on Apr. 215, 2013,
15 pages.

Office Action issued in U.S. Appl. No. 13/770,508 on Oct. 7,2013; 6
pages.

Office Action issued in U.S. Appl. No. 13/832,301 on Dec. 23, 2014,
15 pages.

Office Action issued in U.S. Appl. No. 13/832,387 on May 5, 2015,
66 pages.

Office Action issued in U.S. Appl. No. 13/832,387 on Dec. 8, 2014,
36 pages.

US 9,400,998 B2
Page 8

(56) References Cited
OTHER PUBLICATIONS

Office Actionissued in U.S. Appl. No. 13/832,464 on Apr. 2,2015; 12
pages.

Office Action issued in U.S. Appl. No. 13/832,561 on Dec. 24, 2014,
15 pages.

Office Action issued in U.S. Appl. No. 13/832,642 on Jan. 16, 2015;
20 pages.

Office Action issued in U.S. Appl. No. 13/832,688 on Aug. 27,2014,
6 pages.

Office Action issued in U.S. Appl. No. 13/832,688 on Dec. 3,2014, 7
pages.

Office Action issued in U.S. Appl. No. 13/832,688 on Mar. 14, 2014,
9 pages.

Office Action issued in U.S. Appl. No. 13/832,951 on Feb. 12,2015,
10 pages.

Office Action issued in U.S. Appl. No. 14/165,243 on Mar. 26, 2015;
17 pages.

Altintas et al.; “Aurora Software Product Line”; Cybersoft Informa-
tion Technologies Co.; 2005; pp. 1-8.

Annevelink et al.; “Heterogeneous Database Intergration in a Physi-
cian Workstation”; 1992; S pages.

Arsanjani, Ali; “Developing and Integrating Enterprise Components
and Services”; Communications of the ACM; vol. 45, No. 10; Oct.
2002; pp. 31-34.

Aversano, Lerina et al.; “Introducing eServices in Business Process
Models”; SEKE °02; Ischia Italy; Jul. 15-19, 2002; pp. 481-488.
Baker, Stacy; “Benefits of Assortment Planning”; Assortment Plan-
ning for Apparel Retailers—2005 Management Briefing; Just Style;
Jun. 2005; 3 pages.

Bastide, Remi et al.; “Formal Specification of CORBA Services:
Experience and Lessons Learned”; 2000; pp. 105-117.
Boetterweck, Goetz; “A Model-Driven Approach to the Engineering
of Multiple User Interfaces”; Lecture Notes in Computer Science;
2007; vol. 4364/2007; pp. 106-115.

Born, Marc et al.; “Customizing UML for Component Design”;
www.dot-profile.de; UML Workshop, Palm Springs, CA; Nov. 2000.
Bratthall, Lars G. et al.; “Integrating Hundreds of Products through
One Architecture—The Industrial IT Architecture”, ICSE ’02;
Orlando, Florida; May 19-25, 2002; pp. 604-614.

Bussler, Christoph; “The Role of B2B Engines in B2B Integration
Architectures”; SIGMOD Record; vol. 31, No. 1; Mar. 2002; pp.
67-72.

Carlson, David A.; “Designing XML Vocabularies with UML”;
OOPSLA 2000 Companion; Minneapolis, Minnesota; 2000; pp.
95-96.

Coen-Porisini, Alberto et al.; “A Formal Approach for Designing
CORBA-Based Applications”; ACM Transactions on Software Engi-
neering and Methodology; vol. 12, No. 2; Apr. 2003; pp. 107-151.
Cole, James et al.; “Extending Support for Contracts in ebXML”;
IEEE; 2001; pp. 119-127.

Damodaran, Suresh; “B2B Integration over the Internet with XML—
RosettaNet Successes and Challenges”; WWW2004; May 17-22,
2004; pp. 188-195.

Definition of “header” and “message header”; Newton’s Telecom
Dictionary; 18th Edition; 2002; pp. 347, 464.

Diehl et al.; “Service Architecture for an Object-Oriented Next Gen-
eration Profile Register”; date unknown; 8 pages.

DiNitto, Elisabetta et al.; “Deriving Executable Process Descriptions
from UML”; ICSE °02; May 19-25, 2002; pp. 155-165.

Dogac, Asuman et al.; “An ebXML Infrastructure Implementation
through UDDI Registries and RosettaNet PIPs”; ACM SIGMOD;
Madison, Wisconsin; Jun. 4-6, 2002; pp. 512-523.

“DOTS Inc. Selects Compass Software’s smartmerchandising for
Merchandise Planning and Assortment Planning”; PR Newswire;
Dec. 11, 2002; 2 pages.

Eyal, Anat et al.; “Integrating and Customizing Heterogeneous
E-Commerce Applications”; The VLDB Journal; Aug. 2001; pp.
16-38.

Fingar, Peter; “Component-Based Frameworks for E-Commerce”;
Communications of the ACM; vol. 43, No. 10; Oct. 2000; pp. 61-66.

Fremantle, Paul et al.; “Enterprise Services”; Communications of the
ACM,; vol. 45, No. 10; Oct. 2002; pp. 77-79.

FSML-Financial Services Markup Language (Jul. 14, 1999) http://
xml.coverpages.org/FSML-v1500a.pdf; pp. 1-159 (2 parts).

Gable, Julie; “Enterprise Application Integration”; Information Man-
agement Journal; Mar./Apr. 2002; pp. 48-52.

Gillibrand, David; “Essential Business Object Design”; Communi-
cations of the ACM; vol. 43, No. 2; Feb. 2000; pp. 117-119.
Glushko, Robert J. et al.; “An XML Framework for Agent-Based
E-Commerce”; Communications of the ACM; vol. 42, No. 3; Mar.
1999; pp. 106-114.

Gokhale, Aniruddha et al.; “Applying Model-Integrated Computing
to Component Middleware and Enterprise Applications”; Commu-
nications of the ACM; vol. 45, No. 10; Oct. 2002; pp. 65-70.
Gosain, Sanjay et al.; “The Impact of Common E-Business Inter-
faces”; Communications of the ACM; vol. 46, No. 2; Dec. 2003; pp.
186-195.

Gruhn, Volker et al.; “Workflow Management Based on Process
Model Repositories”; IEEE 1998; pp. 379-388.

Han, Zaw Z. et al.; “Interoperability from Electronic Commerce to
Litigation Using XML Rules”; 2003; pp. 93-94.

Hasselbring, Wilhelm; “Information System Integration”; Commu-
nications of the ACM; vol. 43, No. 6; Jun. 2000; pp. 33-38.

He, Ning et al.; “B2B Contract Implementation Using Windows
DNS”; 2001; pp. 71-79.

“Header”, Newton’s Telecom Dictionary; 12th Edition, 2004; pp.
389-390.

Himoff et al.; “Magenta Technology: Multi-Agent Systems for
Industrial Logistics”; AAMAS’0S; Jul. 25-29, 2005; 2005 ACM; pp.
60-66:1-7).

Hogg, K. et al.; “An Evaluation of Web Services in the Design of a
B2B Application”; 27th Australasian Computer Science Conference;
Dunedin, New Zealand; 2004; pp. 331-340.

Huhns, Michael N. et al.; “Automating Supply-Chain Mangement”;
Jul. 15-19, 2002; pp. 1017-1024.

Jaeger, Dirk et al.; “Using UML for Software Process Modeling”;
1999; pp. 91-108.

Kappel, Gerti et al.; “A Framework for Workflow Management Sys-
tems Based on Objects, Rules, and Roles”; ACM Computing Sur-
veys; ACM Press; vol. 32; Mar. 2000; 5 pages.

Karp, Alan H.; “E-speak E-xplained”; Communications of the ACM;
vol. 46, No. 7; Jul. 2003; pp. 113-118.

Ketabchi et al.; “Object-Oriented Database Management Support for
Software Maintenance and Reverse Engineering”; Department of
Electrical Engineering and Computer Science, Santa Clara Univer-
sity; 1989, 4 pages.

Khosravi, Navid et al.; “An Approach to Building Model Driven
Enterprise Systems in Nebras Enterprise Framework”; OOPSLA
’02: Companion of the 17th Annual ACM SIGPLAN Conference on
Object-Oriented Programming, Systems, Languages, and Applica-
tions; Nov. 4-8, 2002; pp. 32-33.

Kim, Dan Jong et al.; “A Comparison of B2B E-Service Solutions”;
Communications of the ACM; vol. 46, No. 12; Dec. 2003; pp. 317-
324.

Kim, HyoungDo; “Conceptual Modeling and Specification Genera-
tion for B2B Business Processes Based on ebXML”; SIGMOD
Record; vol. 31, No. 1; Mar. 2002; pp. 37-42.

Lee, Jinyoul et al.; “Enterprise Integration with ERP and EAI”;
Communications of the ACM; vol. 46, No. 2; Feb. 2003; pp. 54-60.
Levi, Keith et al.; “A Goal-Driven Approach to Enterprise Compo-
nent Identification and Specification”; Communications of the ACM;
vol. 45, No. 10; Oct. 2002; pp. 45-52.

Lockemann et al.; “Flexibility through Multi-Agent Systems: Solu-
tions or Illusions”; SOFSEM 2004; pp. 41-56.

Lynn, Chris; “Sony Enters Brand Asset Management Market”; The
Seybold Report; Analyzing Publishing Technologies; Aug. 4, 2004,
<www.Seybold365.com>; 3 pages.

Maamar, Zakaria et al.; “Toward Intelligent Business Objects”; Com-
munications of the ACM; vol. 43, No. 10; Oct. 2000, pp. 99-101.
Mascolo et al.; “An Analytical Method for Performance Evaluation of
Kanban Controlled Production Systems”; Operations Research; vol.
44, No. 1; 1996; pp. 50-64.

US 9,400,998 B2
Page 9

(56) References Cited
OTHER PUBLICATIONS

Medjahed, Brahim et al.; “Composing Web Services on the Semantic
Web”; The VLDB Journal; vol. 12, No. 4, Sep. 23, 2003; pp. 333-351.
Medjahed, Brahim et al; “Business-to-Business Interactions: Issues
and Enabling Technologies”; The VLDB Journal; vol. 12, No. 1; Apr.
3,2003; pp. 59-89.

Meltzer, Bart et al.; “XML and Electronic Commerce: Enabling the
Network Economy”; SIGMOD Record; ACM Press; vol. 27, No. 4;
Dec. 1998; pp. 21-24.

Microsoft; “Creating an XML Web Service Proxy”; 2001; mshelp://
ms.msdnqtr.2003apr.1033/cpguide/html/
cpeoncreatingwebserviceproxy.htm; 3 pages.

Proceedings of OMG Workshops; http://www.omg.org/news/meet-
ings/workshops/proceedings.htm; pp. 1-3. Retrieved on Mar. 17,
2005.

Quix, Christoph et al.; “Business Data Management for Business-to-
Business Electronic Commerce”; SIGMOD Record; vol. 31, No. 1;
Mar. 2002; pp. 49-54.

SAP 2008 Annual Report; 256 pages.

“SAP Labs and HP Team to Advance Internet-Based Supply Chain
Collaboration”; Business Editors and Technology Writers; Business
Wire; New York; Feb. 3, 2000; 4 pages.

SAP Structured Entity Relationship Model (SAP-SERM) for R/3
System Release 4.0 (Part 1); Dec. 1998; 5954 pages.

Sap Structured Entity Relationship Model (SAP-SERM) for R/3
System Release 4.0 (Part 2); Dec. 1998; 7838 pages.

Sap Structured Entity Relationship Model (SAP-SErM) for R/3 Sys-
tem Release 4.0 Introduction and Index; Dec. 1998; 26 pages.

SAP; “BC-Central Maintenance and Transport Objects”; Release
4.6C; Apr. 200; 15 pages.

Schulze, Wolfgang et al.; “Standardising on Workflow-Manage-
ment—The OMG Workflow Management Facility”; SIGGROUP
Bulletin; vol. 19, No. 1; Apr. 1998; pp. 24-30.

Shi, Min-Hua et al.; “MQML-Message Queuing Markup Language”;
Proceedings of the 4th IEEE International Workshop on Advanced
Issues of E-Commerce and Web-Based Information Systems
(WECWIS 2002); 2002; 8 pages.

Siegel, Jon; “OMG Overview: CORBA and the OMA in Enterprise
Computing”; Communications of the ACM; vol. 41, No. 10; Oct.
1998; pp. 37-43.

Skonnard, Aaron etal.; “BizTalk Server 2000: Architecture and Tools
for Trading Partner Integration”; MSDn Magazine; 2000; ms-help://
ms.msdnqtr.2003apr.1033/dnmag00/htmal/biztalk htm; 7 pages.
Soederstroem, Eva; “Standardising the Business Vocabulary of Stan-
dards”; SAC, Madrid, Spain; 2002; pp. 1048-1052.

Sprott, David; “Componentizing the Enterprise Application Pack-
ages”; Communications of the ACM; vol. 43, No. 4; Apr. 2000; pp.
63-69.

Statement in Accordance with the Notice from the European Patent
Office dated Oct. 1, 2007 Concerning Business Methods—EPC;
Official Journal of the European Patent Office; Munich; Nov. 1,2007,
pp. 592-593.

Stonebraker, Michael; “Too Much Middleware”; SIGMOD Record,
vol. 31, No. 1; Mar. 2002; pp. 97-106.

Stumptner, Markus et al.; “On the Road to Behavior-Based Integra-
tion”; First Asia-Pacific Conferences on Conceptual Modelling;
Dunedin, New Zealand; Jan. 2004; pp. 15-22.

Sutherland, Jeff; “Business Objects in Corporate Information Sys-
tems”; ACM Computing Surveys; vol. 27, No. 2; Jun. 1995; pp.
274-276.

Sutherland, Jeff, “Why I Love the OMG: Emergence of a Business
Object Component Architecture”; StandardView; vol. 6, No. 1; Mar.
1998; pp. 4-13.

Tenenbaum, Jay M. et al.; “Eco System: An Internet Commerce
Architecture”; IEEE; May 1997; pp. 48-55.

Terai, Koichi et al.; “Coordinating Web Services Based on Business
Models”; 2003; pp. 473-478.

Trastour, David et al.; “Semantic Web Support for the Business-to-
Business E-Commerce Lifecycle”, WWW2002, Honolulu, Hawaii;
May 7-11, 2002; pp. 89-98.

“UML in the .com Enterprise: Modeling CORBA, Components,
XML/XMI and Metadata Workshop”; <http://www.omg.org/news/
meetings/workshops/uml__presentations.htm> retrieved on Mar. 17,
2005.

“Visual and Quantitative Assortment Planning Applications Drive
Partnership and Profit”; PR Newswire; Jan. 12, 2006; 3 pages.
Webster’s Revised Unabridged Dictionary (1913+1828); Def. “mer-
chandise”; <http://machaut.uchicago.edu/?resource=Webster%27s
&word=merchandise&usel1913=on&u>. Retrieved on Sep. 1, 2009.
Yang, J. et al.; “Service Deployment for Virtual Enterprises”; IEEE;
2001; pp. 107-115.

Yang, Jian et al.; “Interoperation Support for Electronic Business”;
Communications of the ACM; vol. 43, No. 6; Jun. 2000; pp. 39-47.
Zencke, Peter; “Engineering a Business Platform”; SAP AG 2005;
Engineering BPP; [Online] previously available at URL www.sap.
com/community/pub/webcast/2006__01__16_ Analyst Summit
Vegas/2006_01__16_ Analyst_Summit_ Vegas_ 009.pdf ; 36
pages.

Communication Pursuant to Article 94(3) EPC issued in European
Application No. 07835755.5 on Feb. 22, 2012; 7 pages.
Communication Pursuant to Article 94(3) EPC issued in related
European Application No. 05757432.9 on Jan. 26, 2009, 4 pages.
Communication Pursuant to Article 94(3) issued in European Appli-
cation No. 05757432.9 on Apr. 12, 2011; S pages.

Communication Pursuant to Article 94(3) issued in European Appli-
cation No. 05766672.9 on Jul. 14, 2011, 4 pages.

Communication Pursuant to Rules 70(2) and 70a(2) EPC issued in
related European Application No. 07835755.5 on Feb. 28, 2011; 6
pages.

International Preliminary Report on Patentability under Chapter I
issued in International Application No. PCT/US2005/019961 on
Dec. 4, 2006, 6 pages.

International Preliminary Report on Patentability under Chapter I
issued in International Application No. PCT/US2005/021481 on
Dec. 20, 2006; 6 pages.

International Preliminary Report on Patentability under Chapter I
issued in International Application No. PCT/US2005/021481 on Jul.
15, 2008; 5 pages.

International Preliminary Report on Patentability under Chapter I
issued in International Application No. PCT/US2005/022137 on
Dec. 28, 2006; 5 pages.

International Preliminary Report on Patentability under Chapter I
issued in International Application No. PCT/US2007/011378 on
Nov. 17, 2008; 11 pages.

International Search Report and Written Opinion issued in Interna-
tional Application No. PCT/CN2011/001238 on May 3, 2012; 9
pages.

International Search Report and Written Opinion of the International
Searching Authority issued in International Application No. PCT/
CN2010/073856 on Mar. 17, 2011; 8 pages.

International Search Report and Written Opinion of the International
Searching Authority issued in International Application No. PCT/
CN2010/073864 on Mar. 3, 2011; 8 pages.

International Search Report and Written Opinion of the International
Searching Authority issued in International Application No. PCT/
CN2010/073868 on Mar. 17, 2011; 10 pages.

International Search Report and Written Opinion of the International
Searching Authority issued in International Application No. PCT/
1B2006/001401 on Aug. 27, 2008; 8 pages.

International Search Report and Written Opinion of the International
Searching Authority issued in International Application No. PCT/
U52005/019961 on Sep. 22, 2005; 8 pages.

International Search Report and Written Opinion of the International
Searching Authority issued in International Application No. PCT/
US2005/021481 on Apr. 11, 2006; 7 pages.

International Search Report and Written Opinion of the International
Searching Authority issued in International Application No. PCT/
US2005/021481 on May 29, 2007; 6 pages.

International Search Report and Written Opinion of the International
Searching Authority issued in International Application No. PCT/
US2005/022137 on May 12, 2006; 7 pages.

US 9,400,998 B2
Page 10

(56) References Cited
OTHER PUBLICATIONS

International Search Report and Written Opinion of the International
Searching Authority issued in International Application No. PCT/
US2005/022137 on Sep. 23, 2005; 7 pages.

International Search Report and Written Opinion of the International
Searching Authority issued in International Application No. PCT/
U52007/011378 on Apr. 30, 2008; 17 pages.

Supplementary European Search Report issued in related European
Application No. 05766672.9 on Oct. 6, 2009; 3 pages.
Supplementary European Search Report issued in related European
Application No. 05823434.5 on Sep. 28, 2009; 3 pages.

Notice of Allowance issued in related U.S. Appl. No. 11/864,866 on
Jul. 22, 2011; 6 pages.

Notice of Allowance issued in related U.S. Appl. No. 11/864,866 on
Mar. 13, 2012; 7 pages.

Notice of Allowance issued in related U.S. Appl. No. 12/060,178 on
Dec. 6, 2010; 4 pages.

Notice of Allowance issued in related U.S. Appl. No. 12/060,178 on
Sep. 2, 2011; 9 pages.

Notice of Allowance issued in related U.S. Appl. No. 11/145,464 on
Feb. 23,2011, 7 pages.

Notice of Allowance issued in related U.S. Appl. No. 11/145,464 on
Feb. 6, 2012; 7 pages.

Notice of Allowance issued in related U.S. Appl. No. 11/145,464 on
Nov. 1, 2010; 4 pages.

Notice of Allowance issued in related U.S. Appl. No. 11/166,065 on
Oct. 9, 2012; 10 pages.

Notice of Allowance issued in related U.S. Appl. No. 11/166,065 on
Sep. 20, 2010; 6 pages.

Notice of Allowance issued in related U.S. Appl. No. 11/364,538 on
Dec. 13, 2010; 5 pages.

Notice of Allowance issued in related U.S. Appl. No. 11/364,538 on
Jul. 23, 2012; 7 pages.

Notice of Allowance issued in related U.S. Appl. No. 11/364,538 on
Jul. 26, 2011, 6 pages.

Notice of Allowance issued in related U.S. Appl. No. 11/731,857 on
Apr. 11, 2011; 8 pages.

Notice of Allowance issued in related U.S. Appl. No. 11/731,857 on
Dec. 14, 2011; 7 pages.

Notice of Allowance issued in related U.S. Appl. No. 11/731,857 on
Nov. 29, 2010, 4 pages.

Notice of Allowance issued in related U.S. Appl. No. 11/731,857 on
Oct. 9, 2012; 7 pages.

Notice of Allowance issued in related U.S. Appl. No. 11/775,821 on
Feb. 4, 2011; 4 pages.

Notice of Allowance issued in related U.S. Appl. No. 11/775,821 on
Jul. 16, 2010, 4 pages.

Notice of Allowance issued in related U.S. Appl. No. 11/775,821 on
Nov. 2, 2012; 5 pages.

Notice of Allowance issued in related U.S. Appl. No. 11/775,821 on
Oct. 22, 2010; 4 pages.

Notice of Allowance issued in related U.S. Appl. No. 11/803,178 on
May 17, 2011; 13 pages.

Notice of Allowance issued in related U.S. Appl. No. 11/803,178 on
Jul. 17,2012, 15 pages.

Notice of Allowance issued in related U.S. Appl. No. 11/864,832 on
Aug. 23, 2010; 4 pages.

Notice of Allowance issued in related U.S. Appl. No. 11/864,832 on
Dec. 3, 2010; 9 pages.

Notice of Allowance issued in related U.S. Appl. No. 11/864,832 on
Jan. 9,2012;12 pages.

Notice of Allowance issued in related U.S. Appl. No. 11/864,832 on
Jul. 30, 2012;12 pages.

Notice of Allowance issued in related U.S. Appl. No. 11/864,832 on
Jul. 7, 2011;11 pages.

Notice of Allowance issued in related U.S. Appl. No. 11/864,832 on
Mar. 24, 2010; 11 pages.

Notice of Allowance issued in related U.S. Appl. No. 12/147,395 on
Dec. 24, 2012; 11 pages.

Notice of Allowance issued in related U.S. Appl. No. 12/147,395 on
Oct. 26, 2010; 10 pages.

Notice of Allowance issued in related U.S. Appl. No. 12/147,449 on
Apr. 28, 2011; 9 pages.

Notice of Allowance issued in U.S. Appl. No. 11/155,368 on Mar. 14,
2011; 7 pages.

Notice of Allowance issued in U.S. Appl. No. 11/155,368 on Jul. 23,
2012; 7 pages.

Notice of Allowance issued in U.S. Appl. No. 11/155,368 on Nov. 8,
2011; 7 pages.

Notice of Allowance issued in U.S. Appl. No. 11/155,368 on Oct. 7,
2010; 4 pages.

Notice of Allowance issued in U.S. Appl. No. 11/166,065 on Feb. 15,
2012; 7 pages.

Notice of Allowance issued in U.S. Appl. No. 11/166,065 on Mar. 8,
2011; 5 pages.

Notice of Allowance issued in U.S. Appl. No. 11/640,422 on May 22,
2012; 7 pages.

Notice of Allowance issued in U.S. Appl. No. 11/640,422 on Sep. 29,
2011; 7 pages.

Notice of Allowance issued in U.S. Appl. No. 11/775,821 on Dec. 30,
2011; 5 pages.

Notice of Allowance issued in U.S. Appl. No. 11/775,821 on Sep. 21,
2011; 5 pages.

Notice of Allowance issued in U.S. Appl. No. 11/864,786 on Nov. 7,
2012; 7 pages.

Notice of Allowance issued in U.S. Appl. No. 11/864,811 on Mar. 2,
2012; 8 pages.

Notice of Allowance issued in U.S. Appl. No. 11/864,811 on Nov. 14,
2011; 8 pages.

Notice of Allowance issued in U.S. Appl. No. 11/864,811 on Sep. 10,
2012; 10 pages.

Notice of Allowance issued in U.S. Appl. No. 12/059,971 on Jun. 28,
2012; 12 pages.

Notice of Allowance issued in U.S. Appl. No. 12/060,062 on Mar. 20,
2012; 16 pages.

Notice of Allowance issued in U.S. Appl. No. 12/060,062 on Nov. 9,
2012; 7 pages.

Notice of Allowance issued in U.S. Appl. No. 12/060,155 on Apr. 24,
2012; 15 pages.

Notice of Allowance issued in U.S. Appl. No. 12/060,171 on Oct. 3,
2012; 10 pages.

Notice of Allowance issued in U.S. Appl. No. 12/060,192 on Mar. 2,
2012; 18 pages.

Notice of Allowance issued in U.S. Appl. No. 12/060,192 on Oct. 29,
2012; 12 pages.

Notice of Allowance issued in U.S. Appl. No. 12/147,378 on Aug. 31,
2012; 9 pages.

Notice of Allowance issued in U.S. Appl. No. 12/147,378 on Nov. 9,
2011; 16 pages.

Notice of Allowance issued in U.S. Appl. No. 12/147,395 on May 4,
2011; 10 pages.

Notice of Allowance issued in U.S. Appl. No. 12/323,116 on Jun. 11,
2012; 10 pages.

Notice of Allowance issued in U.S. Appl. No. 12/323,139 on Mar. 14,
2012; 10 pages.

Notice of Allowance issued in U.S. Appl. No. 12/323,139 on Mar. 4,
2011; 13 pages.

Notice of Allowance issued in U.S. Appl. No. 12/571,140 on Mar. 20,
2012; 16 pages.

Notice of Allowance issued in U.S. Appl. No. 12/571,140 on Nov. 9,
2012; 8 pages.

Notice of Allowance issued in U.S. Appl. No. 12/815,618 on May 10,
2012; 7 pages.

Notice of Allowance issued in U.S. Appl. No. 12/815,639 on Sep. 24,
2012; 9 pages.

Notice of Allowance issued in U.S. Appl. No. 12/816,293 on Sep. 19,
2012; 7 pages.

Advisory Action issued in U.S. Appl. No. 11/155,368 on Mar. 31,
2010; 3 pages.

Office Action issued in related U.S. Appl. No. 11/640,422 on Apr. 2,
2009; 13 pages.

US 9,400,998 B2
Page 11

(56) References Cited
OTHER PUBLICATIONS

Office Action issued in related U.S. Appl. No. 12/060,178 on Dec. 7,
2009; 6 pages.

Office Action issued in related U.S. Appl. No. 12/060,178 on May 25,
2010; 19 pages.

Office Action issued in related U.S. Appl. No. 11/145,464 on Aug. 5,
2009; 31 pages.

Office Action issued in related U.S. Appl. No. 11/145,464 on Feb. 5,
2010; 57 pages.

Office Action issued in related U.S. Appl. No. 11/145,464 on Jan. 22,
2009; 30 pages.

Office Action issued in related U.S. Appl. No. 11/155,368 on Dec. 10,
2009; 43 pages.

Office Action issued in related U.S. Appl. No. 11/155,368 on May 14,
2009; 6 pages.

Office Action issued in related U.S. Appl. No. 11/166,065 on Jun. 24,
2009; 6 pages.

Office Action issued in related U.S. Appl. No. 11/166,065 on Mar. 3,
2010; 25 pages.

Office Action issued in related U.S. Appl. No. 11/364,538 on Aug. 4,
2009; 5 pages.

Office Action issued in related U.S. Appl. No. 11/364,538 on Mar. 4,
2010; 40 pages.

Office Action issued in related U.S. Appl. No. 11/640,422 on Dec. 30,
2009; 9 pages.

Office Action issued in related U.S. Appl. No. 11/731,857 on Feb. 4,
2010; 22 pages.

Office Action issued in related U.S. Appl. No. 11/731,857 on May 15,
2009; 11 pages.

Office Action issued in related U.S. Appl. No. 11/775,821 on Jan. 22,
2010; 16 pages.

Office Action issued in related U.S. Appl. No. 11/803,178 on Jun. 29,
2009; 5 pages.

Office Action issued in related U.S. Appl. No. 11/803,178 on Mar. 4,
2010; 43 pages.

Office Action issued in related U.S. Appl. No. 11/864,786 on Jun. 22,
2009; 7 pages.

Office Action issued in related U.S. Appl. 11/864,786 on Mar. 3,
2010; 12 pages.

Office Action issued in related U.S. Appl. No. 11/864,832 on Sep. 18,
2009; 14 pages.

Office Action issued in related U.S. Appl. No. 11/864,863 on Dec. 22,
2011; 20 pages.

Office Action issued in related U.S. Appl. No. 11/864,863 on Jul. 21,
2011; 29 pages.

Office Action issued in related U.S. Appl. No. 11/864,866 on Feb. 3,
2011; 20 pages.

Office Action issued in related U.S. Appl. No. 11/864,871 on Apr. 21,
2010; 20 pages.

Office Action issued in related U.S. Appl. No. 11/864,871 on Oct. 1,
2010; 30 pages.

Office Action issued in related U.S. Appl. No. 12/059,804 on Apr. 28,
2011; 14 pages.

Office Action issued in related U.S. Appl. 12/059,860 on Aug. 3,
2011; 15 pages.

Office Action issued in related U.S. Appl. No. 12/059,860 on Jan. 23,
2012; 16 pages.

Office Action issued in related U.S. Appl. No. 12/059,867 on Aug. 18,
2009; 37 pages.

Office Action issued in related U.S. Appl. No. 12/059,867 on Feb. 22,
2010; 24 pages.

Office Action issued in related U.S. Appl. No. 12/059,971 on May 18,
2011; 13 pages.

Office Action issued in related U.S. Appl. No. 12/059,971 on Nov. 4,
2010; 20 pages.

Office Action issued in related U.S. Appl. No. 12/060,054 on Dec. 7,
2011; 15 pages.

Office Action issued in related U.S. Appl. No. 12/060,054 on Jun. 29,
2011; 15 pages.

Office Action issued in related U.S. Appl. No. 12/060,062 on Jul. 13,
2011; 16 pages.

Office Action issued in related U.S. Appl. No. 12/060,149 on Aug. 26,
2010; 15 pages.

Office Action issued in related U.S. Appl. No. 12/060,149 on Feb. 4,
2011; 19 pages.

Office Action issued in related U.S. Appl. No. 12/060,155 on May 10,
2011; 8 pages.

Office Action issued in related U.S. Appl. No. 12/060,155 on Oct. 31,
2011; 15 pages.

Office Action issued in related U.S. Appl. No. 12/060,171 on Aug. 11,
2009; 11 pages.

Office Action issued in related U.S. Appl. No. 12/060,171 on Jan. 26,
2011; 17 pages.

Office Action issued in related U.S. Appl. No. 12/060,171 on Jul. 1,
2010; 19 pages.

Office Action issued in related U.S. Appl. No. 12/060,171 on Mar. 1,
2012; 19 pages.

Office Action issued in related U.S. Appl. No. 12/060,171 on Mar. 19,
2010; 10 pages.

Office Action issued in related U.S. Appl. No. 12/060,192 on Apr. 14,
2011; 18 pages.

Office Action issued in related U.S. Appl. No. 12/060,192 on Sep. 6,
2011; 18 pages.

Office Action issued in related U.S. Appl. No. 12/147,399 on Jan. 26,
2011; 16 pages.

Office Action issued in related U.S. Appl. No. 12/334,175 on May 27,
2011; 12 pages.

Office Action issued in U.S. Appl. No. 11/640,422 on May 14, 2010,
12 pages.

Office Action issued in U.S. Appl. No. 11/864,786 on Mar. 30, 2012,
12 pages.

Office Action issued in U.S. Appl. No. 11/864,811 on Jul. 26, 2011,
7 pages.

Office Action issued in U.S. Appl. No. 11/864,811 on Mar. 18,2011,
10 pages.

Office Action issued in U.S. Appl. No. 12/059,804 on Nov. 14,2011,
15 pages.

Office Action issued in U.S. Appl. No. 12/060,144 on Dec. 8, 2011,
18 pages.

Office Action issued in U.S. Appl. No. 12/060,144 on Jun. 23, 2011,
16 pages.

Office Action issued in U.S. Appl. No. 12/147,378 on Jun. 17,2011,
10 pages.

Office Action issued in U.S. Appl. No. 12/147,414 on Apr. 14,2011,
30 pages.

Office Action issued in U.S. Appl. No. 12/147,414 on Oct. 26, 2011,
27 pages.

Office Action issued in U.S. Appl. No. 12/323,116 on Jan. 27, 2012,
7 pages.

Office Action issued in U.S. Appl. No. 12/323,116 on Sep. 6,2011; 8
pages.

Office Action issued in U.S. Appl. No. 12/571,140 on Sep. 26, 2011,
14 pages.

Office Action issued in U.S. Appl. No. 12/571,154 on Apr. 2, 2012; 13
pages.

Office Action issued in U.S. Appl. No. 12/571,154 on Aug. 15,2012,
15 pages.

Office Action issued in U.S. Appl. No. 12/815,576 on Oct. 12,2012,
11 pages.

Office Action issued in U.S. Appl. No. 12/815,618 on Dec. 22, 2011,
8 pages.

Office Action issued in U.S. Appl. No. 12/815,639 on May 24, 2012,
7 pages.

Office Action issued in U.S. Appl. No. 12/815,698 on Jan. 20, 2012;
10 pages.

Office Action issued in U.S. Appl. No. 12/815,698 on Jul. 20, 2012;
13 pages.

Office Action issued in U.S. Appl. No. 12/815,750 on Sep. 28, 2012,
66 pages.

Office Action issued in U.S. Appl. No. 12/815,802 on Jul. 20, 2012;
16 pages.

US 9,400,998 B2
Page 12

(56) References Cited
OTHER PUBLICATIONS

Office Action issued in U.S. Appl. No. 12/815,911 on Sep. 26,2012,
14 pages.

Office Action issued in U.S. Appl. No. 12/816,083 on May 9, 2012,
20 pages.

Office Action issued in U.S. Appl. No. 12/816,083 on Sep. 21,2012,
22 pages.

Office Action issued in U.S. Appl. No. 12/816,170 on Jul. 24, 2012,
9 pages.

Office Action issued in U.S. Appl. No. 12/816,268 on Oct. 11,2012,
11 pages.

Office Action issued in U.S. Appl. No. 12/816,293 on Apr. 25,2012,
10 pages.

Office Action issued in U.S. Appl. No. 13/192,543 on Aug. 28, 2012,
14 pages.

Office Action issued in U.S. Appl. No. 13/192,555 on Jul. 20, 2012;
7 pages.

Office Action issued in U.S. Appl. No. 13/192,574 on Oct. 24,2012,
6 pages.

Office Action issued in U.S. Appl. No. 13/192,612 on Oct. 4,2012; 12
pages.

Office Action issued in U.S. Appl. No. 13/349,477 on Jun. 29, 2012,
13 pages.

Office Action issued in U.S. Appl. No. 13/349,477 on Nov. 15,2012,
15 pages.

Office Action issued in U.S. Appl. No. 13/535,881 on Dec. 21, 2012;
7 pages.

* cited by examiner

U.S. Patent

Overall Process

Jul. 26, 2016 Sheet 1 of 44

510{‘)

Create Business
Scenario from Delails of
Business Process

4
i

%]

}

Create
Business
Object Model

ety
2,
L

Add Details fo Steps of
Business Scenaric o
Create Process
interaction Model

-

Y

L 1

Generale Interface from
Business Object Modsl

ey
[~
N3

Create
Message Chorsography

!

Use Interface
to Create
Message

—,
3
RSN

108
Craate
Business
Document Flow
108

!

Send
Message lo Complete
Transaction

1

o

US 9,400,998 B2

U.S. Patent Jul. 26, 2016 Sheet 2 of 44 US 9,400,998 B2
202 204 206 208 210 22 24 218
[Accounting || Payment | llwoicing] | SCE | | SCP | | FC 1 | SEM || Supplier
o T | E P ERE N I S T e e
Df@rdering‘jm 230\ <228 M7y Contral ||}
Antract)l el R L&l jl""’@
... RITTTS T, | HERws i et B8 NI
Qrdering Business — ol e 5
é Document ||| 234 g\gg 130
222 Wviom N
:: H had ?‘ i _______» -
Commoni. | | MT 131 d“f;g il e |
cation ||gos Sy t——— 1| [242 :
T2t || | 555190 e ;
246 el MY :
‘ c/_\ ‘— ﬁvz-i:’“}éi- i
MT 21 | [M7 20]| et
e 256 25—
MT 291 a0
258 2507 4
¢Delivery’) 4 = -
MT 201 | |l v id M ;
224 262 W7 201 ||| M7 201 - ;
= | e A~
ML20T | T 201 || M7 207
o 272 21 ;
" " :
MT 201 | [l s
< Q/J MT 201 |f| M1 201 :
< ===l |78 276 z
M1 251 (4FNT 250 | i e :
. 282 :
h NT 201
264 :
'R
MT 203 5
286
S R v ﬁ PRSI | RO IR AT NMM
Payment n H 430 |2$’7 ,\I
i | ozs MT 420 >
| P £ %’_432 Bank
Ea\g;mﬁ 218
: i .
B Payment Reguest »
: MT 434 ogn :
N P (EDI} 222 J
: e >
“ Y MT 432 Bzfnk Stgiemeﬂi
: 205 294 information (EDI)
ST e e S 2
00

U.S. Patent Jul. 26, 2016 Sheet 3 of 44 US 9,400,998 B2

5‘ 300

a3

<3

[
KA
Ka>
<

AN
A

T Xl

——1__ Business Object

3761 Model

3 201\\ Data Types

e

\ interfaces |1/

327

23
g
]
A
I
7]

If
.

Service Providers/
Vendors
308

Customers

g8

FIG. 3A

U.S. Patent Jul. 26, 2016 Sheet 4 of 44 US 9,400,998 B2
5300
/380 (360
Deployment Umtg@"g Deployment Unit 36
Process Component 384 Frocess Component 364
Buséﬁess Operation Operation Busifﬁ:ass
Goject < Messages » Ohject
358 356 366 368
A A
1§ y, 1§ J
Direct Diract
Communication Communication
y_Foundation Layer Foundation Layer Y
Master Data 378 375 Master Data
{Jbject Object
System A System B

FIG. 3B

US 9,400,998 B2

Sheet 5 of 44

Jul. 26, 2016

U.S. Patent

IAR3IE

RN
Jam

[avos |

drpjoe

i

HEN-
SIS

S30RSI

BAIBS BLLMOB}ILER
108
SNPCH oikBd/aannoaxy
S0.UILIOT]

y \
——
(NOD) 1y

5 33
ssdepy X

U.S. Patent Jul. 26, 2016 Sheet 6 of 44 US 9,400,998 B2
Modeling Environment
F———— T
: Design-Time Environment :
| |
I . 5_349 |
51 6—2‘ ' Modeling Teol |
I + '
I I
l Vodel =502
| Reprasentation ,
'______+_____J
Apstract f
14
Representation P 504
Generator
Abstract ¢ 506
Represeniation
I ag | |
| Device and Platform 1
| Specific Runtime Tools |
I | 5084 § ¥V (5088 vV C88CH |
I
| XG> Java XGL—> Flasgh XGE> DHTML :
| Compiler Compiler Interpreter I
I I - I I
| vV 510 v 526 |
|
| Java Code Flash Gode :
| |
| vy con y C518 v o2 |
I |
: Java Runtime Flash Runtime DHTML Runtime |
I
l p |
| y 614 v C520 y s |
| GUt on Java GUl on Flash GUlon DHTML | |
: Platform Platform Platiom |
I
| |

Run-Time Ervironment

U.S. Patent Jul. 26, 2016 Sheet 7 of 44 US 9,400,998 B2

Model ¢ 502
Representation

Using Abstract
Represantation
Generator

Abstract ¢ 506
Representation

in Runtime Environment

Runtime Rurtime

560a7)) Eiiepresentai}en o o o tf%epreseniat‘ien ¢ 5500
{(Targel Device {(Targel Device
Specific) Specific)

FIG. 5B

U.S. Patent Jul. 26, 2016 Sheet 8 of 44 US 9,400,998 B2
604
Sender | G602 Recipient 5
|
606
Information
e Pattern 1
608
Notification S
P Pattern 2
™
P
— Query 670
6122 Pattern 3
P Response
h S
'
~— Request S 674
Pattern 4
816
('1— Confirmation
™

FIG. 6

U.S. Patent

Jul. 26, 2016

Sheet 9 of 44

US 9,400,998 B2

702 _L
704 'L

Payment Info

Payment

Y

1 9.9.9.0.9

—

Paymant Card

\

XXXAXX

1 9.9.9.9.9 4

\j

KXHHXX

j 700

FIG. 7

U.S. Patent Jul. 26, 2016 Sheet 10 of 44 US 9,400,998 B2

800
Car j ’

802 804
1- Car = Wheel /5_
806
> Motor /5—
5‘ 808
> Daor —

FIG. 8

US 9,400,998 B2

Sheet 11 of 44

Jul. 26, 2016

U.S. Patent

6 Old

vi6

~

Gigoont} 9b £ oy

w 5
9.6 O O
:%8 ,’@

Z & JoneziEinadg LOBZIEIRUSD

maw Ngg

O
O

806 |w\
506 Iﬂ\
po6 iy

N%m

Yo |
120g
e
—> e ||
BPILUBA

008 W

U.S. Patent Jul. 26, 2016 Sheet 12 of 44

Hem

US 9,400,998 B2

fem

>>| KHX

> wy

In]
N
]

j‘ 1004

j— 1008

j_ 1008

FIG. 10

US 9,400,998 B2

Sheet 13 of 44

Jul. 26, 2016

U.S. Patent

L1 Ol

s }

Aledlainoeinuein _A

— <abeyoediurds

—— cAuBgiogess
L cAueisAng)
| <Ausdiedngs
| <obeyoedlueds
<BRIO>

= AUBdiaeS _A"
Ciit |ﬂ

» fuedising

N

m.gﬁlﬂ

Aed

s.g&lﬂ

1BPIO

U.S. Patent Jul. 26, 2016 Sheet 14 of 44 US 9,400,998 B2

1202 1204 1
5 5?200 J 5;2()6
A > X 1:¢ Relationship corresponds to 1: {01}
29 1249
SL.O 5’!208 5 212 512?4

X 1:1 Relgtionship corresponds o 12 {1}

51278 216 5?225’ 1299
A 5 X 5

1:n Relationship corresponds to 1: {1.n}

1226 1228 i
S 1224 ‘ § 120
A 3 X 1:on Relationship corresponds to 1: {00}

FIG. 12

1304

, Composition _
Compaosite < 1 Componenis
1300 1310 113@2
FIG. 13

‘5—?410
r_7408 5—1494

Car = Wheel
51406

> Door

FIG. 14

US 9,400,998 B2

U.S. Patent Jul. 26, 2016 Sheet 15 of 44
)‘1506
?502L Broduct > Competitor —_5_7500
i 1 > Product
1508
1504
L Competitor
FIG. 15
802)’1604
{
L Country
N
1600
Parson ’5—
FIG. 16
1700 1702
Tl venide —<]—j
1704
Truck —j
1708
Car ——5—
1708
Ship —j

FIG. 17

U.S. Patent Jul. 26, 2016

1800
Complete Spec. j

Sheet 16 of 44

US 9,400,998 B2

5 1802

fncomplete Spec.
Disjoint
Non
Disjoint
1806 Spec.
B Entity c N Entifies belonging fo subtype

e

Specialization Category

FIG. 18

S‘ 2000

Closing Report o
Structura Hem

Closing Report
Structure ltem -
Hierarchy

U.S. Patent Jul. 26, 2016 Sheet 17 of 44 US 9,400,998 B2

Create BOM

Receive
Indication of Fields within
Message 2100

Y

Determine Whether Field =
Administrative Data or
Obiject

2102
Determine
Proper Name
for Object 104

Object in Business Yes

Objsct Model?

integrate New Atiributes
Model from Message Into Existing

Internal Object Structure Object

Y
ldentify v

Subtypes and
Generalizations

211
v

Assign
Altributes o Components

2108

%

B

114

v FIG. 21A

)

U.S. Patent Jul. 26, 2016 Sheet 18 of 44 US 9,400,998 B2

Component in
Business Object
Model?
2118

No

integrate Gbject Node from Add Component

Business Chject Model into {o Businass
Object 2118 Object Model 2499

Y

integrate New Altribuies Into
Obiect Node

2120

v

Add
Integrity
Rules

v

Determine
Services
{Offerad

v

Receive Indication of
Location for Object in
Business Object Model

212
v integrate

Obiect to Business Object
Model

(%]
2,
tN]
P

NG

12

LY

o

NI

130
I

FIG. 21B

U.S. Patent Jul. 26, 2016 Sheet 19 of 44 US 9,400,998 B2

Generste
Interface

Receive
Indication of
Package Template

v

Receive
Indication of
Message Type

y

Select Package
From Package Template

2204

2200

2202

Package Required
for interface?

2206

No

Remove Package
from Package Template

2208

More Packages in
Package Templaie?

FIG. 22A

U.S. Patent Jul. 26, 2016 Sheet 20 of 44 US 9,400,998 B2

Copy Entity Template from
Package in BOM into
Package in Package

Template 2919

No

Specialization in
Entity Template?

Select
Subtype for Specialization

2216

FIG. 22B

U.S. Patent Jul. 26, 2016 Sheet 21 of 44 US 9,400,998 B2

Select Package
from Package Template

218
™y

Select Enfity
in Package

entily in Package
Required for
Interface?

2222

No

Remove Entity
from Package

Yes More Entities in

Package?

More Packages in
Package
Template?

2228

Yes

FIG. 22C

U.S. Patent Jul. 26, 2016 Sheet 22 of 44 US 9,400,998 B2

Retrieve Cardinality
Belween Superordinate
Entity and Entity from BOM

2230

Receive indication of
Cardinality Between
Superordinate Entity and
Entity 2232

Received
Cardinality Subset
of BOM
Cardinality?
2234

:

Assign Received Cardinality
No Betwsen Superordinate
Entily and Eniity

Send Error 2238
Message

FIG. 22D

U.S. Patent Jul. 26, 2016 Sheet 23 of 44 US 9,400,998 B2

Select Leading Object from
Package Template

2240

>¢

No
Supgrordinate to
Leading Ohject? l
Leading
(Object
Analyzed
Reverse 2048
Direction of Dependancy
2244
Adjust
Cardinality
2246

FIG. 22E

U.S. Patent Jul. 26, 2016 Sheet 24 of 44 US 9,400,998 B2

Select Entity Subordinate lo
Leading Obiect

2250

>¢

Non-Analyzed Entity N\ _N¢
Supsrordinale o
Selected Entity?

Y

Selected
Entity
Analyzed

Reverse
Direction of Dependency
2254
¢ More Eniities
Subordinale to Leading
Adiust (Object?

Cardinality 5960

2256

Replace BTD in Package

Template with Business

Document Object Name
4262

FIG. 22F

US 9,400,998 B2

Sheet 25 of 44

Jul. 26, 2016

U.S. Patent

Smwlﬂ

ﬁmwlﬁ

RGN

-

| uopesyddy

qiebessapy
slogiitte

I

80E¢ Lﬁ.

Jahng
opee |ﬂ

€¢ Old

REINTGEAISTE

8oes

(islessap
20018NY

(iplessejy-uns

9iLe

BLEZ

>

]

{

P
WENTOE NI

g
& cebessapy
@ 20018Ng

7 uonesyddy

E&NR

JOpuap

vommlw

U.S. Patent Jul. 26, 2016 Sheet 26 of 44 US 9,400,998 B2

e 2404

Application Cc-mpane/nt , | Message Envelope
7/ | {technical)

/ "Message Type” Type “MsgDalalype”

/ BusinessDocument

24007 BusDocMessageHeader

inferface 1 BusDocMessageiD
Proxy 1 MessageCreationDate

BusDocObiect

\
AN
N

FIG. 24

US 9,400,998 B2

Sheet 27 of 44

Jul. 26, 2016

U.S. Patent

w\‘m.mlﬁ

e

20
uoneolddy

G¢ Old

TBueny

qielessapesiiyos
TUSWTO0(R5auI5Tg

yisl

AXTIA~DUNOTING

Smmlﬁ.
mommlﬂ

wapshg-sing

808

qrefessappoiiyoe]
T5DESH-o0Essa)y

TOETSaN

mgmwlw

AXDI-PUNCaL

yoee Iﬂ

WoIsAS-IODUBA

US 9,400,998 B2

Sheet 28 of 44

Jul. 26, 2016

U.S. Patent

V9¢ Old

9097 5

Emm(ﬂ

o067 |
po97 S
7209z S |

TURIoENY

=y=amn N

RO TNy e

(sbessapy e

B e eSS Ig E]

TIBUTDO(Seo0eNg

T30EH

SOESTR

009¢ |W

[PPA 080

Ewwlﬂ

US 9,400,998 B2

Sheet 29 of 44

Jul. 26, 2016

U.S. Patent

ye9e

SN

1} el00
BUomIpY

/

'L 98lao
PUCHIpY

{uoisIeA+ZCI

d9¢ Old

'} wsigo
IRy

JREEETS
JeUSHIneY

(uoisiesp+Zal

S

4 109080
ETOTD0Y

4 welen
EUCINDY

{UoBIRA+HZA

- el00

19lg0
Buipea

BRIy S

Buipes

TAI0000sseUeNg

8282

rese Iﬁ
029¢ H

m%mlﬁ

uonduossgpbessaly
(iljucisian oy £

NI S VT IS

TEORES

EN
TB0ES[-aDESSay

N

TIESSeN

E@mlﬂ

A

U.S. Patent Jul. 26, 2016 Sheet 30 of 44 US 9,400,998 B2

27660
“Leading
Business
Erviranment Otject
Component . Component
ST Business
e Dogument
implementation oy
Object ORIt R 27000

27002

FIG. 27A

Business Document
Objsct

27008 27040

27006

FIG. 27B

U.S. Patent Jul. 26, 2016 Sheet 31 of 44 US 9,400,998 B2

Directed relationships

£{01], tmor t:{m}

FIG. 27C

27024

Directed relationships

FIG. 27D

U.S. Patent Jul. 26, 2016 Sheet 32 of 44

Business Document Objedt

Level 1 2 3

g

US 9,400,998 B2

5 27030

Al >3 A2
b33t A3
X1 X2 b X3 c2
—3» X4 B3 B4
X
-
Directed relationships
{ 27032
Level 1 2 2 4 5
<X1> :
<A1 :
<AZ>
<jAZ>
<A3>
<fAJ>
</Af> i
<XZ> :
<X3>
H >
s <2 <>
i : <1
] <fC2>
<x2> e
<X4> :
<B3»
: <Bd>
: </B4>
I?\>
<iX4> </B3
<fX1> : i

FIG. 27E

U.S. Patent Jul. 26, 2016 Sheet 33 of 44 US 9,400,998 B2

52800

Define the business object

2801 ™\ via process component

model in the process
modeling phase

Design the business abject
within the enterprise
services repository

2802 7\

Generate the service
provider class and data
dictionary elemeants within
the development
environment

2803

implement the service
provider class within the
development environment

2804

FiG. 28

US 9,400,998 B2

Sheet 34 of 44

Jul. 26, 2016

U.S. Patent

%mmw

yo62

{n4) dvdy s

YEHOO «
NOCINGD -

{dLLH) 10U .

Ul $5300Y

STARD B

SiiZAT «

S

SPOUIBHA
'Sl o

©

SINGUYTY o

BOBLBIY

2068

106
{paseg
JUBWUOIALL) HONEZIRIoIS »
Sojy BIMNPONAS
SSOUISNG « ELSI] »
{paseg yeiq0)
SLCHIDUAY
ADURISIBUD Y »
[9UISY
welgo sssuisng
Ayuibaiyy

U.S. Patent Jul. 26, 2016 Sheet 35 of 44 US 9,400,998 B2

30002

Define Integration Scenaric and Process jSOO?
Component interaction Model During Process
Modgling Phase

v

identify Reguired Interface Operations and /5‘30()2
Process Agents During Process Modeling
Phase

v

Create Service inferface, Service interfac 3003
Operations, and Related Process Agant Within j T
an Enterprise Services Repository as Defined

in Process Modeling Phase

v

Generale Proxy Class for the jJG(M
service interface

v

Create Process Agent Class and Register the jgg@b
Process Agent

v

implement the Agent Class Within 2 j“mﬁ
Development Environment

FIG. 30

U.S. Patent

37002
j;?’i()”i

Jul. 26, 2016

j\?’lﬁi?

Sheet 36 of 44

US 9,400,998 B2

537’03

Modal the Status & Action
Management (58AM]

Use Existing Statuses and

Schemas Actions from the Simulate the Schemas
per Relevant Business Otject Model or == Verify Correciness and
Business Object Node Create New Statuses and Completeness
Within Enterprise Services Actions
Repository
53?06 53105 l 53?04
Create Missing
o Redale the Aclions, Statuses,
Generate Status Code N~ . : e
, , Statuses to Corrasponding and Derivations in the
GDT's Including Constants ' e , o
anc Code List Providers Elements Business Object Model
s e in the Node Within the Enterprise

Services Repository

l 53‘?07

531(3‘8

Generate
Proxy Class for the Business
Object Service Provider
and Impord
S&AM Schemas

implement ihe
Service Provider
anc Gall the
S&AM Runtime Interface
from
the Actions

FiG. 31

US 9,400,998 B2

Sheet 37 of 44

Jul. 26, 2016

U.S. Patent

LUOHoeloD MR L

walan e

wepuadag
A

#

Loneoneds

a0IBS

ooz —/

wewebueiny UOIRIILNURLCYD paseg-abessay

yuswabuely [€€H

UOBEDIUNLIWICY
poseg-obessapy

33

go0zs —/

H Aauep

T00%E N\ ozoze fipopy
} Aued
8107¢ —/

800z Aued
H anus) jeuckesuebic
9078 —/

A Auedwo)
} 100y
ioze —/

7007C SIENUBDAIY) USHBOMUWIC)

¢t "Old

U.S. Patent Jul. 26, 2016 Sheet 38 of 44 US 9,400,998 B2

FIG. 33

/33004 33000
Reporting Line [3306 é_ o
Request Header
Message
/33006
—Reporting Line A
- 5 0
—>{Unit Replicate [3308
[Request | E Reporting | /3010
—] Ling Linit -
—|>>E Name
/33012
—Upper
—>>1—{Reporting
Jtine Unit
/33014
>: m Manager
[Assignment

US 9,400,998 B2

Sheet 39 of 44

Jul. 26, 2016

U.S. Patent

£20%E
S (luieiis
-5soUsng
IR -SUN0SeE
(lussAcssau ~JUB
-snghunedionie s NODISSaL
~SAGUOHROUMLILIOY -18ng
- 6Tove
Henve - -
51075 7L 07e
18anbayMEdy
1sanbayaen) ~gayuuneur
-despunaurbupoday] ~Buoday 1senbayaesdey N Buninday
AN GooTe
GLOve SO0
Japesabessan 1apBap
-JUBUINOoCSsaUieng] ,mmmwmmgmu sapeapiabecsapy
Z00%E 000YEC
FOGYE
158nbaya’oy 18anhayery
abessayisanbaysen -Gayuneur ~Cesiunaun
-dorpunsurbunday -Bunsodey ~Burpoday
QUIBN 2UA]L 21RO AMIRHIDIRN ¢lana PAATT IRELCE FACLCE LIgATT abeyond
bePe "ol

US 9,400,998 B2

Sheet 40 of 44

Jul. 26, 2016

U.S. Patent

[Z50PE G0Te 07t
pouadeleq IS0 L0 pousAALpIEA
SYOve
CYve
ryOve 0v0ve
HupyeuriBu
Giodaysanbayseoy IR
-Gauunsurbuniodey SNy -Bunsodey nunsunbuiodey
YEOPE
3
E GRG7E Uy ojequoe
-BEBpuew
-MOOESsSal
sul] 81E(V0D b -18ng
Helve
CEOYE
GEve SUBN
3 -Sf-juBl
WeN WNIGIN IN3d -NOOCISeaU
NAGAUNIZOYNONYT -1sng]
QIUEN 2GAL BIB AuBUIDIRY GiBAST PIBAET glena FALCE LISAET aheyond
eve ‘Ol

US 9,400,998 B2

Sheet 41 of 44

Jul. 26, 2016

U.S. Patent

yu0vE

AUeN WIGIN

CB30vs

L0

Y

8L0vE

pousdled (35010

BL0VE

B

[

pi0ve

DOUSEANPHEA

iove

0LOVE 390%¢ 9907¢
aueN)sanbey ey
-gayuunauibuioday NG =N BUIEN
Go0pE
FOOve 2907
0]
JO1R0IpYY L0 “BOPUIBISIR(
B H vaE0Pe
9S0v
Ghos giielgn
MO NOISHIANCOON LG -SjoUia
sluBy odA] BIeCi AlBuipiR)) ¢i8AGT PBADT £leAeT FAELCE YET] aheysed
e-¥e Sid

US 9,400,998 B2

Sheet 42 of 44

Jul. 26, 2016

U.S. Patent

gl 2L viive
pousdRIE] (35070 LGP dAIPHEN
RS 0178 G0i7e
0 ive
wsiubissyisbe v Lo
-uejpisanbeyjeiem -ufissyisle -ufissysabe
~despiunsurnBuodsy NQ -l -Uein
001%¢
FOLYE
Ik anoslas
-SRI
o -rreuribu
[0 NOISHIANODON L gp-podsyseddn
360 507 ol
pousdsIE] (38070 L OlpuLEdAIPHEA
60VE
. BR0YE GR0VE
JneurBuodFATTEE
-guiaddmsanbeye)
axisaddmsanbaysien HunRuTbul nusuribu
-derpunsunbupoday NG ~Jodayisddn -uodsysaddn
BlURN odA] ZIRGIANBUIDIRY IS I3RS INCLCR FALLCE LIBATT sheyoed
vve "Sid

US 9,400,998 B2

Sheet 43 of 44

Jul. 26, 2016

U.S. Patent

AR
viibe afiiele)
SR -B0UITNe3
Ao
(11108 -gselizuepy
G0 NOISHIANOOON Lg -peubiissy
alueN adA} plegiieuipien ¢leae plaag SCLCE) FACLCE TETES abheysed
vt Sid

US 9,400,998 B2

Sheet 44 of 44

Jul. 26, 2016

U.S. Patent

eliaiivg AU SPALOS
POLI0e00 |G&h—] BINPOYIS fE—] WRY fEE— Juewkey
spusdsg BEH]
8005 —/ 8005 —/ 0058 —/ o058 —/
0o0se 2NPBUSS JUsLUABY

G¢ "Old

US 9,400,998 B2

1
CONSISTENT INTERFACE FOR
MESSAGE-BASED COMMUNICATION
ARRANGEMENT, ORGANISATIONAL
CENTRE REPLICATION REQUEST, AND
PAYMENT SCHEDULE

COPYRIGHT NOTICE

A portion of the disclosure of this patent document con-
tains material which is subject to copyright protection. The
copyright owner has no objection to the facsimile reproduc-
tion by anyone of the patent document or the patent disclo-
sure, as it appears in the Patent and Trademark Office patent
file or records, but otherwise reserves all copyright rights
whatsoever.

CROSS-REFERENCE TO RELATED
APPLICATIONS

Some details of the subject matter of this specification are
described in previously-filed U.S. patent application Ser. No.
11/803,178, entitled “Consistent Set of Interfaces Derived
From a Business Object Model”, filed on May 11, 2007,
which is hereby incorporated by reference.

TECHNICAL FIELD

The subject matter described herein relates generally to the
generation and use of consistent interfaces (or services)
derived from a business object model. More particularly, the
present disclosure relates to the generation and use of consis-
tent interfaces or services that are suitable for use across
industries, across businesses, and across different depart-
ments within a business.

BACKGROUND

Transactions are common among businesses and between
business departments within a particular business. During
any given transaction, these business entities exchange infor-
mation. For example, during a sales transaction, numerous
business entities may be involved, such as a sales entity that
sells merchandise to a customer, a financial institution that
handles the financial transaction, and a warehouse that sends
the merchandise to the customer. The end-to-end business
transaction may require a significant amount of information
to be exchanged between the various business entities
involved. For example, the customer may send a request for
the merchandise as well as some form of payment authoriza-
tion for the merchandise to the sales entity, and the sales entity
may send the financial institution a request for a transfer of
funds from the customer’s account to the sales entity’s
account.

Exchanging information between different business enti-
ties is not a simple task. This is particularly true because the
information used by different business entities is usually
tightly tied to the business entity itself. Each business entity
may have its own program for handling its part of the trans-
action. These programs differ from each other because they
typically are created for different purposes and because each
business entity may use semantics that differ from the other
business entities. For example, one program may relate to
accounting, another program may relate to manufacturing,
and athird program may relate to inventory control. Similarly,
one program may identify merchandise using the name of the
product while another program may identity the same mer-
chandise using its model number. Further, one business entity

15

25

35

40

45

50

2

may use U.S. dollars to represent its currency while another
business entity may use Japanese Yen. A simple difference in
formatting, e.g., the use of upper-case lettering rather than
lower-case or title-case, makes the exchange of information
between businesses a difficult task. Unless the individual
businesses agree upon particular semantics, human interac-
tion typically is required to facilitate transactions between
these businesses. Because these “heterogeneous™ programs
are used by different companies or by different business areas
within a given company, a need exists for a consistent way to
exchange information and perform a business transaction
between the different business entities.

Currently, many standards exist that offer a variety of inter-
faces used to exchange business information. Most of these
interfaces, however, apply to only one specific industry and
are not consistent between the different standards. Moreover,
a number of these interfaces are not consistent within an
individual standard.

SUMMARY

In a first aspect, a computer-readable medium includes
program code for providing a message-based interface for
exchanging information about message-based communica-
tion arrangements. The medium comprises program code for
receiving, via a message-based interface exposing at least one
service as defined in a service registry and from a heteroge-
neous application executing in an environment of computer
systems providing message-based services, a first message
for requesting a list of message-based communication
arrangements corresponding to specified selection elements.
The first message includes a message package hierarchically
organized as a message-based communication arrangements
query by elements message entity and a specified selection
elements package including a specified selection elements
entity. The specified selection elements entity includes at
least one message communication profile group key, message
communication profile group short text, and at least one mes-
sage communication profile group type code. The medium
further comprises program code for sending a second mes-
sage to the heterogeneous application responsive to the first
message.

Implementations can include the following. The specified
selection elements entity further includes at least one of the
following: a company universally unique identifier (UUID), a
company identifier type code, a partner UUID, a partner
identifier type code, a partner name, a partner identifier (ID),
a communication system participating business system ser-
vice UUID, a party communication profile code, a commu-
nication system ID, a communication system participating
business system ID, system administrative data, a status,
search text, a service specification message communication
profilekey, a service specification configured inbound service
interface key, a service specification semantic inbound ser-
vice interface key, a service specification configured out-
bound service interface key, a service specification semantic
outbound service interface key, a service specification mes-
sage communication profile category code, a service specifi-
cation inbound identity ID, a service specification inbound
identity UUID, and a service specification logical port name.

In another aspect, a distributed system operates in a land-
scape of computer systems providing message-based services
defined in a service registry. The system comprises a graphi-
cal user interface comprising computer readable instructions,
embedded on tangible media, for requesting a list of message-
based communication arrangements corresponding to speci-
fied selection elements, the instructions using a request. The

US 9,400,998 B2

3

system further comprises a first memory storing a user inter-
face controller for processing the request and involving a
message including a message package hierarchically orga-
nized as a message-based communication arrangements
query by elements message entity and a specified selection
elements package including a specified selection elements
entity. The specified selection elements entity includes at
least one message communication profile group key, message
communication profile group short text, and at least one mes-
sage communication profile group type code. The system
further comprises a second memory, remote from the graphi-
cal user interface, storing a plurality of service interfaces,
wherein one of the service interfaces is operable to process
the message via the service interface.

Implementations can include the following. The first
memory is remote from the graphical user interface. The first
memory is remote from the second memory.

In another aspect, a computer-readable medium includes
program code for providing a message-based interface for
exchanging information about reporting line units. The
medium comprises program code for receiving, via a mes-
sage-based interface exposing at least one service as defined
in a service registry and from a heterogeneous application
executing in an environment of computer systems providing
message-based services, a first message for requesting to
replicate reporting line units, including upper reporting line
unit, manager assignment and validity period information.
The first message includes a message package hierarchically
organized as a reporting line unit replicate request message
entity and a reporting line unit replicate request package
including a reporting line unit replicate request entity. The
reporting line unit replicate request entity includes a business
document file source business system identifier, a business
document file name, and a business document file creation
date time. The medium further comprises program code for
sending a second message to the heterogeneous application
responsive to the first message.

Implementations can include the following. The reporting
line unit replicate request entity further includes at least one
reporting line unit entity from a reporting line unit package

In another aspect, a distributed system operates in a land-
scape of computer systems providing message-based services
defined in a service registry. The system comprises a graphi-
cal user interface comprising computer readable instructions,
embedded on tangible media, for requesting to replicate
reporting line units, including upper reporting line unit, man-
ager assignment and validity period information, the instruc-
tions using a request. The system further comprises a first
memory storing a user interface controller for processing the
request and involving a message including a message pack-
age hierarchically organized as a reporting line unit replicate
request message entity and a reporting line unit replicate
request package including a reporting line unit replicate
request entity. The reporting line unit replicate request entity
includes a business document file source business system
identifier, a business document file name, and a business
document file creation date time. The system further com-
prises a second memory, remote from the graphical user inter-
face, storing a plurality of service interfaces, wherein one of
the service interfaces is operable to process the message via
the service interface.

Implementations can include the following. The first
memory is remote from the graphical user interface. The first
memory is remote from the second memory.

In another aspect, a computer-readable medium includes
program code for providing a message-based interface for
exchanging information about schedules for processing pay-

10

15

20

25

30

35

40

45

50

55

60

65

4

ments, including specifications concerning payment dates
and amounts to be paid. The medium comprises program
code for receiving, via a message-based interface exposing at
least one service as defined in a service registry and from a
heterogeneous application executing in an environment of
computer systems providing message-based services, a first
message for notifying of a payment schedule, including a
schedule for processing payments with specifications con-
cerning payment dates and amounts to be paid. The first
message includes a message package hierarchically orga-
nized as a payment schedule notification message entity and
a payment schedule package including a payment schedule
entity. The payment schedule entity includes at least one
payment schedule universally unique identifier (UUID) and
at least one item entity. Each item entity includes an item
UUID and at least one item schedule line entity. Each item
schedule line entity includes an item schedule line UUID and
at least one text collection entity. The medium further com-
prises program code for sending a second message to the
heterogeneous application responsive to the first message.

Implementations can include the following. The each item
entity further includes at least one of the following: a host
object node reference, a type code, an amount, a period, and
a status.

In another aspect, a distributed system operates in a land-
scape of computer systems providing message-based services
defined in a service registry. The system comprises a graphi-
cal user interface comprising computer readable instructions,
embedded on tangible media, for notifying of a payment
schedule, including a schedule for processing payments with
specifications concerning payment dates and amounts to be
paid, the instructions using a request. The system further
comprises a first memory storing a user interface controller
for processing the request and involving a message including
a message package hierarchically organized as a payment
schedule notification message entity and a payment schedule
package including a payment schedule entity. The payment
schedule entity includes at least one payment schedule uni-
versally unique identifier (UUID) and at least one item entity.
Each item entity includes an item UUID and at least one item
schedule line entity. Each item schedule line entity includes
an item schedule line UUID and at least one text collection
entity. The system further comprises a second memory,
remote from the graphical user interface, storing a plurality of
service interfaces, wherein one of the service interfaces is
operable to process the message via the service interface.

Implementations can include the following. The first
memory is remote from the graphical user interface. The first
memory is remote from the second memory.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 depicts a flow diagram of the overall steps per-
formed by methods and systems consistent with the subject
matter described herein.

FIG. 2 depicts a business document flow for an invoice
request in accordance with methods and systems consistent
with the subject matter described herein.

FIGS. 3A-B illustrate example environments implement-
ing the transmission, receipt, and processing of data between
heterogeneous applications in accordance with certain
embodiments included in the present disclosure.

FIG. 4 illustrates an example application implementing
certain techniques and components in accordance with one
embodiment of the system of FIG. 1.

FIG. 5A depicts an example development environment in
accordance with one embodiment of FIG. 1.

US 9,400,998 B2

5

FIG. 5B depicts a simplified process for mapping a model
representation to a runtime representation using the example
development environment of FIG. 5A or some other devel-
opment environment.

FIG. 6 depicts message categories in accordance with
methods and systems consistent with the subject matter
described herein.

FIG. 7 depicts an example of a package in accordance with
methods and systems consistent with the subject matter
described herein.

FIG. 8 depicts another example of a package in accordance
with methods and systems consistent with the subject matter
described herein.

FIG. 9 depicts a third example of a package in accordance
with methods and systems consistent with the subject matter
described herein.

FIG. 10 depicts a fourth example of a package in accor-
dance with methods and systems consistent with the subject
matter described herein.

FIG. 11 depicts the representation of a package in the XML
schema in accordance with methods and systems consistent
with the subject matter described herein.

FIG. 12 depicts a graphical representation of cardinalities
between two entities in accordance with methods and systems
consistent with the subject matter described herein.

FIG. 13 depicts an example of a composition in accordance
with methods and systems consistent with the subject matter
described herein.

FIG. 14 depicts an example of a hierarchical relationship in
accordance with methods and systems consistent with the
subject matter described herein.

FIG. 15 depicts an example of an aggregating relationship
in accordance with methods and systems consistent with the
subject matter described herein.

FIG. 16 depicts an example of an association in accordance
with methods and systems consistent with the subject matter
described herein.

FIG. 17 depicts an example of a specialization in accor-
dance with methods and systems consistent with the subject
matter described herein.

FIG. 18 depicts the categories of specializations in accor-
dance with methods and systems consistent with the subject
matter described herein.

FIG. 19 depicts an example of a hierarchy in accordance
with methods and systems consistent with the subject matter
described herein.

FIG. 20 depicts a graphical representation of a hierarchy in
accordance with methods and systems consistent with the
subject matter described herein.

FIGS. 21 A-B depict a flow diagram of the steps performed
to create a business object model in accordance with methods
and systems consistent with the subject matter described
herein.

FIGS. 22A-F depict a flow diagram of the steps performed
to generate an interface from the business object model in
accordance with methods and systems consistent with the
subject matter described herein.

FIG. 23 depicts an example illustrating the transmittal of a
business document in accordance with methods and systems
consistent with the subject matter described herein.

FIG. 24 depicts an interface proxy in accordance with
methods and systems consistent with the subject matter
described herein.

FIG. 25 depicts an example illustrating the transmittal of a
message using proxies in accordance with methods and sys-
tems consistent with the subject matter described herein.

10

15

20

25

30

35

40

45

50

55

60

65

6

FIG. 26 A depicts components of a message in accordance
with methods and systems consistent with the subject matter
described herein.

FIG. 26B depicts IDs used in a message in accordance with
methods and systems consistent with the subject matter
described herein.

FIGS. 27A-E depict a hierarchization process in accor-
dance with methods and systems consistent with the subject
matter described herein.

FIG. 28 illustrates an example method for service enabling
in accordance with one embodiment of the present disclosure.

FIG. 29 is a graphical illustration of an example business
object and associated components as may be used in the
enterprise service infrastructure system of the present disclo-
sure.

FIG. 30 illustrates an example method for managing a
process agent framework in accordance with one embodi-
ment of the present disclosure.

FIG. 31 illustrates an example method for status and action
management in accordance with one embodiment of the
present disclosure.

FIG. 32 depicts an example MessageBasedCommunica-
tionArrangement object model.

FIG. 33 depicts an example Reportingl.ineUnitReplica-
teRequest message data type.

FIGS. 34-1 through 34-5 depict an example Reportin-
glineUnitReplicateRequest element structure.

FIG. 35 depicts an example PaymentSchedule object
model.

DETAILED DESCRIPTION
A. Overview

Methods and systems consistent with the subject matter
described herein facilitate e-commerce by providing consis-
tent interfaces that are suitable for use across industries,
across businesses, and across different departments within a
business during a business transaction. To generate consistent
interfaces, methods and systems consistent with the subject
matter described herein utilize a business object model,
which reflects the data that will be used during a given busi-
ness transaction. An example of a business transaction is the
exchange of purchase orders and order confirmations
between a buyer and a seller. The business object model is
generated in a hierarchical manner to ensure that the same
type of data is represented the same way throughout the
business object model. This ensures the consistency of the
information in the business object model. Consistency is also
reflected in the semantic meaning of the various structural
elements. That is, each structural element has a consistent
business meaning. For example, the location entity, regard-
less of in which package it is located, refers to a location.

From this business object model, various interfaces are
derived to accomplish the functionality of the business trans-
action. Interfaces provide an entry point for components to
access the functionality of an application. For example, the
interface for a Purchase Order Request provides an entry
point for components to access the functionality of a Purchase
Order, in particular, to transmit and/or receive a Purchase
Order Request. One skilled in the art will recognize that each
of these interfaces may be provided, sold, distributed, uti-
lized, or marketed as a separate product or as a major com-
ponent of a separate product. Alternatively, a group of related
interfaces may be provided, sold, distributed, utilized, or mar-
keted as a product or as a major component of a separate
product. Because the interfaces are generated from the busi-

US 9,400,998 B2

7

ness object model, the information in the interfaces is consis-
tent, and the interfaces are consistent among the business
entities. Such consistency facilitates heterogeneous business
entities in cooperating to accomplish the business transaction.

Generally, the business object is a representation of a type
of'a uniquely identifiable business entity (an object instance)
described by a structural model. In the architecture, processes
may typically operate on business objects. Business objects
represent a specific view on some well-defined business con-
tent. In other words, business objects represent content,
which a typical business user would expect and understand
with little explanation. Business objects are further catego-
rized as business process objects and master data objects. A
master data object is an object that encapsulates master data
(i.e., datathat is valid for a period of time). A business process
object, which is the kind of business object generally found in
a process component, is an object that encapsulates transac-
tional data (i.e., data that is valid for a point in time). The term
business object will be used generically to refer to a business
process object and a master data object, unless the context
requires otherwise. Properly implemented, business objects
are implemented free of redundancies.

The architectural elements also include the process com-
ponent. The process component is a software package that
realizes a business process and generally exposes its func-
tionality as services. The functionality contains business
transactions. In general, the process component contains one
or more semantically related business objects. Often, a par-
ticular business object belongs to no more than one process
component. Interactions between process component pairs
involving their respective business objects, process agents,
operations, interfaces, and messages are described as process
component interactions, which generally determine the inter-
actions of a pair of process components across a deployment
unit boundary. Interactions between process components
within a deployment unit are typically not constrained by the
architectural design and can be implemented in any conve-
nient fashion. Process components may be modular and con-
text-independent. In other words, process components may
not be specific to any particular application and as such, may
be reusable. In some implementations, the process compo-
nent is the smallest (most granular) element of reuse in the
architecture. An external process component is generally
used to represent the external system in describing interac-
tions with the external system; however, this should be under-
stood to require no more of the external system than that able
to produce and receive messages as required by the process
component that interacts with the external system. For
example, process components may include multiple opera-
tions that may provide interaction with the external system.
Each operation generally belongs to one type of process com-
ponent in the architecture. Operations can be synchronous or
asynchronous, corresponding to synchronous or asynchro-
nous process agents, which will be described below. The
operation is often the smallest, separately-callable function,
described by a set of data types used as input, output, and fault
parameters serving as a signature.

The architectural elements may also include the service
interface, referred to simply as the interface. The interface is
a named group of operations. The interface often belongs to
one process component and process component might con-
tain multiple interfaces. In one implementation, the service
interface contains only inbound or outbound operations, but
not a mixture of both. One interface can contain both syn-
chronous and asynchronous operations. Normally, operations
of the same type (either inbound or outbound) which belong
to the same message choreography will belong to the same

10

15

20

25

30

35

40

45

50

55

60

65

8

interface. Thus, generally, all outbound operations to the
same other process component are in one interface.

The architectural elements also include the message.
Operations transmit and receive messages. Any convenient
messaging infrastructure can be used. A message is informa-
tion conveyed from one process component instance to
another, with the expectation that activity will ensue. Opera-
tion can use multiple message types for inbound, outbound,
or error messages. When two process components are in
different deployment units, invocation of an operation of one
process component by the other process component is accom-
plished by the operation on the other process component
sending a message to the first process component.

The architectural elements may also include the process
agent. Process agents do business processing that involves the
sending or receiving of messages. Each operation normally
has at least one associated process agent. Each process agent
can be associated with one or more operations. Process agents
can be either inbound or outbound and either synchronous or
asynchronous. Asynchronous outbound process agents are
called after a business object changes such as after a “create”,
“update”, or “delete” of a business object instance. Synchro-
nous outbound process agents are generally triggered directly
by business object. An outbound process agent will generally
perform some processing of the data of the business object
instance whose change triggered the event. The outbound
agent triggers subsequent business process steps by sending
messages using well-defined outbound services to another
process component, which generally will be in another
deployment unit, or to an external system. The outbound
process agent is linked to the one business object that triggers
the agent, but it is sent not to another business object but rather
to another process component. Thus, the outbound process
agent can be implemented without knowledge of the exact
business object design of the recipient process component.
Alternatively, the process agent may be inbound. For
example, inbound process agents may be used for the inbound
part of a message-based communication. Inbound process
agents are called after a message has been received. The
inbound process agent starts the execution of the business
process step requested in a message by creating or updating
one or multiple business object instances. Inbound process
agent is not generally the agent of business object but of its
process component. Inbound process agent can act on mul-
tiple business objects in a process component. Regardless of
whether the process agent is inbound or outbound, an agent
may be synchronous if used when a process component
requires a more or less immediate response from another
process component, and is waiting for that response to con-
tinue its work.

The architectural elements also include the deployment
unit. Each deployment unit may include one or more process
components that are generally deployed together on a single
computer system platform. Conversely, separate deployment
units can be deployed on separate physical computing sys-
tems. The process components of one deployment unit can
interact with those of another deployment unit using mes-
sages passed through one or more data communication net-
works or other suitable communication channels. Thus, a
deployment unit deployed on a platform belonging to one
business can interact with a deployment unit software entity
deployed on a separate platform belonging to a different and
unrelated business, allowing for business-to-business com-
munication. More than one instance of a given deployment
unit can execute at the same time, on the same computing
system or on separate physical computing systems. This

US 9,400,998 B2

9

arrangement allows the functionality oftered by the deploy-
ment unit to be scaled to meet demand by creating as many
instances as needed.

Since interaction between deployment units is through pro-
cess component operations, one deployment unit can be
replaced by other another deployment unit as long as the new
deployment unit supports the operations depended upon by
other deployment units as appropriate. Thus, while deploy-
ment units can depend on the external interfaces of process
components in other deployment units, deployment units are
not dependent on process component interaction within other
deployment units. Similarly, process components that inter-
act with other process components or external systems only
through messages, e.g., as sent and received by operations,
can also be replaced as long as the replacement generally
supports the operations of the original.

Services (or interfaces) may be provided in a flexible archi-
tecture to support varying criteria between services and sys-
tems. The flexible architecture may generally be provided by
a service delivery business object. The system may be able to
schedule a service asynchronously as necessary, or on a regu-
lar basis. Services may be planned according to a schedule
manually or automatically. For example, a follow-up service
may be scheduled automatically upon completing an initial
service. In addition, flexible execution periods may be pos-
sible (e.g. hourly, daily, every three months, etc.). Each cus-
tomer may plan the services on demand or reschedule service
execution upon request.

FIG. 1 depicts a flow diagram 100 showing an example
technique, perhaps implemented by systems similar to those
disclosed herein. Initially, to generate the business object
model, design engineers study the details of a business pro-
cess, and model the business process using a “business sce-
nario” (step 102). The business scenario identifies the steps
performed by the different business entities during a business
process. Thus, the business scenario is a complete represen-
tation of a clearly defined business process.

After creating the business scenario, the developers add
details to each step of the business scenario (step 104). In
particular, for each step of the business scenario, the devel-
opers identify the complete process steps performed by each
business entity. A discrete portion of the business scenario
reflects a “business transaction,” and each business entity is
referred to as a “component” of the business transaction. The
developers also identify the messages that are transmitted
between the components. A “process interaction model” rep-
resents the complete process steps between two components.

After creating the process interaction model, the develop-
ers create a “message choreography” (step 106), which
depicts the messages transmitted between the two compo-
nents in the process interaction model. The developers then
represent the transmission of the messages between the com-
ponents during a business process in a “business document
flow” (step 108). Thus, the business document flow illustrates
the flow of information between the business entities during a
business process.

FIG. 2 depicts an example business document flow 200 for
the process of purchasing a product or service. The business
entities involved with the illustrative purchase process
include Accounting 202, Payment 204, Invoicing 206, Supply
Chain Execution (“SCE”) 208, Supply Chain Planning
(“SCP”) 210, Fulfillment Coordination (“FC”) 212, Supply
Relationship Management (“SRM”) 214, Supplier 216, and
Bank 218. The business document flow 200 is divided into
four different transactions: Preparation of Ordering (“Con-
tract™) 220, Ordering 222, Goods Receiving (“Delivery”)
224, and Billing/Payment 226. In the business document flow,

10

15

20

25

30

35

40

45

50

55

60

65

10

arrows 228 represent the transmittal of documents. Each
document reflects a message transmitted between entities.
One of ordinary skill in the art will appreciate that the mes-
sages transferred may be considered to be a communications
protocol. The process flow follows the focus of control, which
is depicted as a solid vertical line (e.g., 229) when the step is
required, and a dotted vertical line (e.g., 230) when the step is
optional.

During the Contract transaction 220, the SRM 214 sends a
Source of Supply Notification 232 to the SCP 210. This step
is optional, as illustrated by the optional control line 230
coupling this step to the remainder of the business document
flow 200. During the Ordering transaction 222, the SCP 210
sends a Purchase Requirement Request 234 to the FC 212,
which forwards a Purchase Requirement Request 236 to the
SRM 214. The SRM 214 then sends a Purchase Requirement
Confirmation 238 to the FC 212, and the FC 212 sends a
Purchase Requirement Confirmation 240 to the SCP 210. The
SRM 214 also sends a Purchase Order Request 242 to the
Supplier 216, and sends Purchase Order Information 244 to
the FC 212. The FC 212 then sends a Purchase Order Planning
Notification 246 to the SCP 210. The Supplier 216, after
receiving the Purchase Order Request 242, sends a Purchase
Order Confirmation 248 to the SRM 214, which sends a
Purchase Order Information confirmation message 254 to the
FC 212, which sends a message 256 confirming the Purchase
Order Planning Notification to the SCP 210. The SRM 214
then sends an Invoice Due Notification 258 to Invoicing 206.

During the Delivery transaction 224, the FC 212 sends a
Delivery Execution Request 260 to the SCE 208. The Sup-
plier 216 could optionally (illustrated at control line 250)
send a Dispatched Delivery Notification 252 to the SCE 208.
The SCE 208 then sends a message 262 to the FC 212 noti-
fying the FC 212 that the request for the Delivery Information
was created. The FC 212 then sends a message 264 notifying
the SRM 214 that the request for the Delivery Information
was created. The FC 212 also sends a message 266 notifying
the SCP 210 that the request for the Delivery Information was
created. The SCE 208 sends a message 268 to the FC 212
when the goods have been set aside for delivery. The FC 212
sends a message 270 to the SRM 214 when the goods have
been set aside for delivery. The FC 212 also sends a message
272 to the SCP 210 when the goods have been set aside for
delivery.

The SCE 208 sends a message 274 to the FC 212 when the
goods have been delivered. The FC 212 then sends a message
276 to the SRM 214 indicating that the goods have been
delivered, and sends a message 278 to the SCP 210 indicating
that the goods have been delivered. The SCE 208 then sends
an Inventory Change Accounting Notification 280 to
Accounting 202, and an Inventory Change Notification 282 to
the SCP 210. The FC 212 sends an Invoice Due Notification
284 to Invoicing 206, and SCE 208 sends a Received Delivery
Notification 286 to the Supplier 216.

During the Billing/Payment transaction 226, the Supplier
216 sends an Invoice Request 287 to Invoicing 206. Invoicing
206 then sends a Payment Due Notification 288 to Payment
204, a Tax Due Notification 289 to Payment 204, an Invoice
Confirmation 290 to the Supplier 216, and an Invoice
Accounting Notification 291 to Accounting 202. Payment
204 sends a Payment Request 292 to the Bank 218, and a
Payment Requested Accounting Notification 293 to Account-
ing 202. Bank 218 sends a Bank Statement Information 296 to
Payment 204. Payment 204 then sends a Payment Done Infor-
mation 294 to Invoicing 206 and a Payment Done Accounting
Notification 295 to Accounting 202.

US 9,400,998 B2

11

Within a business document flow, business documents hav-
ing the same or similar structures are marked. For example, in
the business document flow 200 depicted in FIG. 2, Purchase
Requirement Requests 234, 236 and Purchase Requirement
Confirmations 238, 240 have the same structures. Thus, each
of these business documents is marked with an “O6.” Simi-
larly, Purchase Order Request 242 and Purchase Order Con-
firmation 248 have the same structures. Thus, both documents
are marked with an “O1.” Each business document or mes-
sage is based on a message type.

From the business document flow, the developers identify
the business documents having identical or similar structures,
and use these business documents to create the business
object model (step 110). The business object model includes
the objects contained within the business documents. These
objects are reflected as packages containing related informa-
tion, and are arranged in a hierarchical structure within the
business object model, as discussed below.

Methods and systems consistent with the subject matter
described herein then generate interfaces from the business
object model (step 112). The heterogeneous programs use
instantiations of these interfaces (called “business document
objects” below) to create messages (step 114), which are sent
to complete the business transaction (step 116). Business
entities use these messages to exchange information with
other business entities during an end-to-end business trans-
action. Since the business object model is shared by hetero-
geneous programs, the interfaces are consistent among these
programs. The heterogeneous programs use these consistent
interfaces to communicate in a consistent manner, thus facili-
tating the business transactions.

Standardized Business-to-Business (“B2B”) messages are
compliant with at least one of the e-business standards (i.e.,
they include the business-relevant fields of the standard). The
e-business standards include, for example, RosettaNet for the
high-tech industry, Chemical Industry Data Exchange
(“CIDX”), Petroleum Industry Data Exchange (“PIDX”) for
the oil industry, UCCnet for trade, PapiNet for the paper
industry, Odette for the automotive industry, HR-XML for
human resources, and XML Common Business Library
(“xCBL”). Thus, B2B messages enable simple integration of
components in heterogeneous system landscapes. Applica-
tion-to-Application (“A2A”) messages often exceed the stan-
dards and thus may provide the benefit of the full functional-
ity of application components. Although various steps of FIG.
1 were described as being performed manually, one skilled in
the art will appreciate that such steps could be computer-
assisted or performed entirely by a computer, including being
performed by either hardware, software, or any other combi-
nation thereof.

B. Implementation Details

As discussed above, methods and systems consistent with
the subject matter described herein create consistent inter-
faces by generating the interfaces from a business object
model. Details regarding the creation of the business object
model, the generation of an interface from the business object
model, and the use of an interface generated from the business
object model are provided below.

Turning to the illustrated embodiment in FIG. 3A, environ-
ment 300 includes or is communicably coupled (such as via a
one-, bi- or multi-directional link or network) with server 302,
one or more clients 304, one or more or vendors 306, one or
more customers 308, at least some of which communicate
across network 312. But, of course, this illustration is for
example purposes only, and any distributed system or envi-

10

15

20

25

30

35

40

45

50

55

60

65

12

ronment implementing one or more of the techniques
described herein may be within the scope of this disclosure.
Server 302 comprises an electronic computing device oper-
able to receive, transmit, process and store data associated
with environment 300. Generally, FIG. 3A provides merely
one example of computers that may be used with the disclo-
sure. Each computer is generally intended to encompass any
suitable processing device. For example, although FIG. 3A
illustrates one server 302 that may be used with the disclo-
sure, environment 300 can be implemented using computers
other than servers, as well as a server pool. Indeed, server 302
may be any computer or processing device such as, for
example, a blade server, general-purpose personal computer
(PC), Macintosh, workstation, Unix-based computer, or any
other suitable device. In other words, the present disclosure
contemplates computers other than general purpose comput-
ers as well as computers without conventional operating sys-
tems. Server 302 may be adapted to execute any operating
system including Linux, UNIX, Windows Server, or any other
suitable operating system. According to one embodiment,
server 302 may also include or be communicably coupled
with a web server and/or a mail server.

As illustrated (but not required), the server 302 is commu-
nicably coupled with a relatively remote repository 335 over
a portion of the network 312. The repository 335 is any
electronic storage facility, data processing center, or archive
that may supplement or replace local memory (such as 327).
The repository 335 may be a central database communicably
coupled with the one or more servers 302 and the clients 304
via a virtual private network (VPN), SSH (Secure Shell)
tunnel, or other secure network connection. The repository
335 may be physically or logically located at any appropriate
location including in one of the example enterprises or oft-
shore, so long as it remains operable to store information
associated with the environment 300 and communicate such
data to the server 302 or at least a subset of plurality of the
clients 304.

Iustrated server 302 includes local memory 327. Memory
327 may include any memory or database module and may
take the form of volatile or non-volatile memory including,
without limitation, magnetic media, optical media, random
access memory (RAM), read-only memory (ROM), remov-
able media, or any other suitable local or remote memory
component. [llustrated memory 327 includes an exchange
infrastructure (“XI”’) 314, which is an infrastructure that sup-
ports the technical interaction of business processes across
heterogeneous system environments. XI 314 centralizes the
communication between components within a business entity
and between different business entities. When appropriate, XI
314 carries out the mapping between the messages. XI 314
integrates different versions of systems implemented on dif-
ferent platforms (e.g., Java and ABAP). X1314 is based on an
open architecture, and makes use of open standards, such as
eXtensible Markup Language (XML)™ and Java environ-
ments. XI 314 offers services that are useful in a heteroge-
neous and complex system landscape. In particular, X1 314
offers a runtime infrastructure for message exchange, con-
figuration options for managing business processes and mes-
sage flow, and options for transforming message contents
between sender and receiver systems.

X1 314 stores data types 316, a business object model 318,
and interfaces 320. The details regarding the business object
model are described below. Data types 316 are the building
blocks for the business object model 318. The business object
model 318 is used to derive consistent interfaces 320. X1 314
allows for the exchange of information from a first company

US 9,400,998 B2

13

having one computer system to a second company having a
second computer system over network 312 by using the stan-
dardized interfaces 320.

While not illustrated, memory 327 may also include busi-
ness objects and any other appropriate data such as services,
interfaces, VPN applications or services, firewall policies, a
security or access log, print or other reporting files, HTML
files or templates, data classes or object interfaces, child
software applications or sub-systems, and others. This stored
data may be stored in one or more logical or physical reposi-
tories. In some embodiments, the stored data (or pointers
thereto) may be stored in one or more tables in a relational
database described in terms of SQL statements or scripts. In
the same or other embodiments, the stored data may also be
formatted, stored, or defined as various data structures in text
files, XML documents, Virtual Storage Access Method
(VSAM)files, flat files, Btrieve files, comma-separated-value
(CSV) files, internal variables, or one or more libraries. For
example, a particular data service record may merely be a
pointer to a particular piece of third party software stored
remotely. In another example, a particular data service may be
an internally stored software object usable by authenticated
customers or internal development. In short, the stored data
may comprise one table or file or a plurality of tables or files
stored on one computer or across a plurality of computers in
any appropriate format. Indeed, some or all of the stored data
may be local or remote without departing from the scope of
this disclosure and store any type of appropriate data.

Server 302 also includes processor 325. Processor 325
executes instructions and manipulates data to perform the
operations of server 302 such as, for example, a central pro-
cessing unit (CPU), a blade, an application specific integrated
circuit (ASIC), or a field-programmable gate array (FPGA).
Although FIG. 3A illustrates a single processor 325 in server
302, multiple processors 325 may be used according to par-
ticular needs and reference to processor 325 is meant to
include multiple processors 325 where applicable. In the
illustrated embodiment, processor 325 executes at least busi-
ness application 330.

Atahigh level, business application 330 is any application,
program, module, process, or other software that utilizes or
facilitates the exchange of information via messages (or ser-
vices) or the use of business objects. For example, application
330 may implement, utilize or otherwise leverage an enter-
prise service-oriented architecture (enterprise SOA), which
may be considered a blueprint for an adaptable, flexible, and
open IT architecture for developing services-based, enter-
prise-scale business solutions. This example enterprise ser-
vice may be a series of web services combined with business
logic that can be accessed and used repeatedly to support a
particular business process. Aggregating web services into
business-level enterprise services helps provide a more mean-
ingful foundation for the task of automating enterprise-scale
business scenarios Put simply, enterprise services help pro-
vide a holistic combination of actions that are semantically
linked to complete the specific task, no matter how many
cross-applications are involved. In certain cases, environment
300 may implement a composite application 330, as
described below in FIG. 4. Regardless of the particular imple-
mentation, “software” may include software, firmware, wired
or programmed hardware, or any combination thereof as
appropriate. Indeed, application 330 may be written or
described in any appropriate computer language including C,
C++, Java, Visual Basic, assembler, Perl, any suitable version
of'4GL, as well as others. For example, returning to the above
mentioned composite application, the composite application
portions may be implemented as Enterprise Java Beans

40

45

50

14

(EIBs) or the design-time components may have the ability to
generate run-time implementations into different platforms,
such as J2EE (Java 2 Platform, Enterprise Edition), ABAP
(Advanced Business Application Programming) objects, or
Microsoft’s .NET. It will be understood that while application
330 is illustrated in FIG. 4 as including various sub-modules,
application 330 may include numerous other sub-modules or
may instead be a single multi-tasked module that implements
the various features and functionality through various
objects, methods, or other processes. Further, while illus-
trated as internal to server 302, one or more processes asso-
ciated with application 330 may be stored, referenced, or
executed remotely. For example, a portion of application 330
may be a web service that is remotely called, while another
portion of application 330 may be an interface object bundled
for processing at remote client 304. Moreover, application
330 may be a child or sub-module of another software module
or enterprise application (not illustrated) without departing
from the scope of this disclosure. Indeed, application 330
may be a hosted solution that allows multiple related or third
parties in different portions of the process to perform the
respective processing.

More specifically, as illustrated in FIG. 4, application 330
may be a composite application, or an application built on
other applications, that includes an object access layer (OAL)
and a service layer. In this example, application 330 may
execute or provide a number of application services, such as
customer relationship management (CRM) systems, human
resources management (HRM) systems, financial manage-
ment (FM) systems, project management (PM) systems,
knowledge management (KM) systems, and electronic file
and mail systems. Such an object access layer is operable to
exchange data with a plurality of enterprise base systems and
to present the data to a composite application through a uni-
form interface. The example service layer is operable to pro-
vide services to the composite application. These layers may
help the composite application to orchestrate a business pro-
cess in synchronization with other existing processes (e.g.,
native processes of enterprise base systems) and leverage
existing investments in the IT platform. Further, composite
application 330 may run on a heterogeneous IT platform. In
doing so, composite application may be cross-functional in
that it may drive business processes across different applica-
tions, technologies, and organizations. Accordingly, compos-
ite application 330 may drive end-to-end business processes
across heterogeneous systems or sub-systems. Application
330 may also include or be coupled with a persistence layer
and one or more application system connectors. Such appli-
cation system connectors enable data exchange and integra-
tion with enterprise sub-systems and may include an Enter-
prise Connector (EC) interface, an Internet Communication
Manager/Internet Communication Framework (ICM/ICF)
interface, an Encapsulated PostScript (EPS) interface, and/or
other interfaces that provide Remote Function Call (RFC)
capability. It will be understood that while this example
describes a composite application 330, it may instead be a
standalone or (relatively) simple software program. Regard-
less, application 330 may also perform processing automati-
cally, which may indicate that the appropriate processing is
substantially performed by at least one component of envi-
ronment 300. It should be understood that automatically fur-
ther contemplates any suitable administrator or other user
interaction with application 330 or other components of envi-
ronment 300 without departing from the scope of this disclo-
sure.

Returning to FIG. 3A, illustrated server 302 may also
include interface 317 for communicating with other computer

US 9,400,998 B2

15

systems, such as clients 304, over network 312 in a client-
server or other distributed environment. In certain embodi-
ments, server 302 receives data from internal or external
senders through interface 317 for storage in memory 327, for
storage in DB 335, and/or processing by processor 325. Gen-
erally, interface 317 comprises logic encoded in software
and/or hardware in a suitable combination and operable to
communicate with network 312. More specifically, interface
317 may comprise software supporting one or more commu-
nications protocols associated with communications network
312 or hardware operable to communicate physical signals.

Network 312 facilitates wireless or wireline communica-
tion between computer server 302 and any other local or
remote computer, such as clients 304. Network 312 may be all
or a portion of an enterprise or secured network. In another
example, network 312 may be a VPN merely between server
302 and client 304 across wireline or wireless link. Such an
example wireless link may be via 802.11a,802.11b, 802.11g,
802.20, WiMax, and many others. While illustrated as a
single or continuous network, network 312 may be logically
divided into various sub-nets or virtual networks without
departing from the scope of this disclosure, so long as at least
portion of network 312 may facilitate communications
between server 302 and at least one client 304. For example,
server 302 may be communicably coupled to one or more
“local” repositories through one sub-net while communica-
bly coupled to a particular client 304 or “remote” repositories
through another. In other words, network 312 encompasses
any internal or external network, networks, sub-network, or
combination thereof operable to facilitate communications
between various computing components in environment 300.
Network 312 may communicate, for example, Internet Pro-
tocol (IP) packets, Frame Relay frames, Asynchronous Trans-
fer Mode (ATM) cells, voice, video, data, and other suitable
information between network addresses. Network 312 may
include one or more local area networks (LANs), radio access
networks (RANs), metropolitan area networks (MANs), wide
area networks (WANSs), all or a portion of the global computer
network known as the Internet, and/or any other communica-
tion system or systems at one or more locations. In certain
embodiments, network 312 may be a secure network associ-
ated with the enterprise and certain local or remote vendors
306 and customers 308. As used in this disclosure, customer
308 is any person, department, organization, small business,
enterprise, or any other entity that may use or request others
to use environment 300. As described above, vendors 306 also
may be local or remote to customer 308. Indeed, a particular
vendor 306 may provide some content to business application
330, while receiving or purchasing other content (at the same
or different times) as customer 308. As illustrated, customer
308 and vendor 06 each typically perform some processing
(such as uploading or purchasing content) using a computer,
such as client 304.

Client 304 is any computing device operable to connect or
communicate with server 302 or network 312 using any com-
munication link. For example, client 304 is intended to
encompass a personal computer, touch screen terminal, work-
station, network computer, kiosk, wireless data port, smart
phone, personal data assistant (PDA), one or more processors
within these or other devices, or any other suitable processing
device used by or for the benefit of business 308, vendor 306,
or some other user or entity. At a high level, each client 304
includes or executes at least GUI 336 and comprises an elec-
tronic computing device operable to receive, transmit, pro-
cess and store any appropriate data associated with environ-
ment 300. It will be understood that there may be any number
of clients 304 communicably coupled to server 302. Further,

10

15

20

25

30

35

40

45

55

60

65

16

“client 304,” “business,” “business analyst,” “end user,” and
“user” may be used interchangeably as appropriate without
departing from the scope of this disclosure. Moreover, for
ease of illustration, each client 304 is described in terms of
being used by one user. But this disclosure contemplates that
many users may use one computer or that one user may use
multiple computers. For example, client 304 may be a PDA
operable to wirelessly connect with external or unsecured
network. In another example, client 304 may comprise a
laptop that includes an input device, such as a keypad, touch
screen, mouse, or other device that can accept information,
and an output device that conveys information associated
with the operation of server 302 or clients 304, including
digital data, visual information, or GUI 336. Both the input
device and output device may include fixed or removable
storage media such as a magnetic computer disk, CD-ROM,
or other suitable media to both receive input from and provide
output to users of clients 304 through the display, namely the
client portion of GUI or application interface 336.

GUI 336 comprises a graphical user interface operable to
allow the user of client 304 to interface with at least a portion
of'environment 300 for any suitable purpose, such as viewing
application or other transaction data. Generally, GUI 336
provides the particular user with an efficient and user-friendly
presentation of data provided by or communicated within
environment 300. For example, GUI 336 may present the user
with the components and information that is relevant to their
task, increase reuse of such components, and facilitate a siz-
able developer community around those components. GUI
336 may comprise a plurality of customizable frames or
views having interactive fields, pull-down lists, and buttons
operated by the user. For example, GUI 336 is operable to
display data involving business objects and interfaces in a
user-friendly form based on the user context and the dis-
played data. In another example, GUI 336 is operable to
display different levels and types of information involving
business objects and interfaces based on the identified or
supplied user role. GUI 336 may also present a plurality of
portals or dashboards. For example, GUI 336 may display a
portal that allows users to view, create, and manage historical
and real-time reports including role-based reporting and
such. Of course, such reports may be in any appropriate
output format including PDF, HTML, and printable text.
Real-time dashboards often provide table and graph informa-
tion on the current state of the data, which may be supple-
mented by business objects and interfaces. It should be under-
stood that the term graphical user interface may be used in the
singular or in the plural to describe one or more graphical user
interfaces and each of the displays of a particular graphical
user interface. Indeed, reference to GUI 336 may indicate a
reference to the front-end or a component of business appli-
cation 330, as well as the particular interface accessible via
client 304, as appropriate, without departing from the scope
of this disclosure. Therefore, GUI 336 contemplates any
graphical user interface, such as a generic web browser or
touchscreen, that processes information in environment 300
and efficiently presents the results to the user. Server 302 can
accept data from client 304 via the web browser (e.g.,
Microsoft Internet Explorer or Netscape Navigator) and
return the appropriate HTML or XML responses to the
browser using network 312.

More generally in environment 300 as depicted in FIG. 3B,
aFoundation Layer 375 can be deployed on multiple separate
and distinct hardware platforms, e.g., System A 350 and
System B 360, to support application software deployed as
two or more deployment units distributed on the platforms,
including deployment unit 352 deployed on System A and

29 <

US 9,400,998 B2

17

deployment unit 362 deployed on System B. In this example,
the foundation layer can be used to support application soft-
ware deployed in an application layer. In particular, the foun-
dation layer can be used in connection with application soft-
ware implemented in accordance with a software architecture
that provides a suite of enterprise service operations having
various application functionality. In some implementations,
the application software is implemented to be deployed on an
application platform that includes a foundation layer that
contains all fundamental entities that can used from multiple
deployment units. These entities can be process components,
business objects, and reuse service components. A reuse ser-
vice component is a piece of software that is reused in differ-
ent transactions. A reuse service component is used by its
defined interfaces, which can be, e.g., local APIs or service
interfaces. As explained above, process components in sepa-
rate deployment units interact through service operations, as
illustrated by messages passing between service operations
356 and 366, which are implemented in process components
354 and 364, respectively, which are included in deployment
units 352 and 362, respectively. As also explained above,
some form of direct communication is generally the form of
interaction used between a business object, e.g., business
object 358 and 368, of an application deployment unit and a
business object, such as master data object 370, of the Foun-
dation Layer 375.

Various components of the present disclosure may be mod-
eled using a model-driven environment. For example, the
model-driven framework or environment may allow the
developer to use simple drag-and-drop techniques to develop
pattern-based or freestyle user interfaces and define the flow
of data between them. The result could be an efficient, cus-
tomized, visually rich online experience. In some cases, this
model-driven development may accelerate the application
development process and foster business-user self-service. It
further enables business analysts or [T developers to compose
visually rich applications that use analytic services, enter-
prise services, remote function calls (RFCs), APIs, and stored
procedures. In addition, it may allow them to reuse existing
applications and create content using a modeling process and
a visual user interface instead of manual coding.

FIG. 5A depicts an example modeling environment 516,
namely a modeling environment, in accordance with one
embodiment of the present disclosure. Thus, as illustrated in
FIG. 5A, such a modeling environment 516 may implement
techniques for decoupling models created during design-time
from the runtime environment. In other words, model repre-
sentations for GUIs created in a design time environment are
decoupled from the runtime environment in which the GUIs
are executed. Often in these environments, a declarative and
executable representation for GUIs for applications is pro-
vided that is independent of any particular runtime platform,
GUI framework, device, or programming language.

According to some embodiments, a modeler (or other ana-
lyst) may use the model-driven modeling environment 516 to
create pattern-based or freestyle user interfaces using simple
drag-and-drop services. Because this development may be
model-driven, the modeler can typically compose an appli-
cation using models of business objects without having to
write much, if any, code. In some cases, this example model-
ing environment 516 may provide a personalized, secure
interface that helps unify enterprise applications, informa-
tion, and processes into a coherent, role-based portal experi-
ence. Further, the modeling environment 516 may allow the
developer to access and share information and applications in
a collaborative environment. In this way, virtual collaboration
rooms allow developers to work together efficiently, regard-

10

15

20

25

30

35

40

45

50

55

60

65

18

less of where they are located, and may enable powerful and
immediate communication that crosses organizational
boundaries while enforcing security requirements. Indeed,
the modeling environment 516 may provide a shared set of
services for finding, organizing, and accessing unstructured
content stored in third-party repositories and content manage-
ment systems across various networks 312. Classification
tools may automate the organization of information, while
subject-matter experts and content managers can publish
information to distinct user audiences. Regardless of the par-
ticular implementation or architecture, this modeling envi-
ronment 516 may allow the developer to easily model hosted
business objects 140 using this model-driven approach.

In certain embodiments, the modeling environment 516
may implement or utilize a generic, declarative, and execut-
able GUI language (generally described as XGL). This
example XGL is generally independent of any particular GUI
framework or runtime platform. Further, XGL is normally not
dependent on characteristics of a target device on which the
graphic user interface is to be displayed and may also be
independent of any programming language. XGL is used to
generate a generic representation (occasionally referred to as
the XGL representation or XGL-compliant representation)
for a design-time model representation. The XGL represen-
tation is thus typically a device-independent representation of
a GUI. The XGL representation is declarative in that the
representation does not depend on any particular GUI frame-
work, runtime platform, device, or programming language.
The XGL representation can be executable and therefore can
unambiguously encapsulate execution semantics for the GUI
described by a model representation. In short, models of
different types can be transformed to XGL representations.

The XGL representation may be used for generating rep-
resentations of various different GUIs and supports various
GUI features including full windowing and componentiza-
tion support, rich data visualizations and animations, rich
modes of data entry and user interactions, and flexible con-
nectivity to any complex application data services. While a
specific embodiment of XGL is discussed, various other types
of XGLs may also be used in alternative embodiments. In
other words, it will be understood that XGL is used for
example description only and may be read to include any
abstract or modeling language that can be generic, declara-
tive, and executable.

Turning to the illustrated embodiment in FIG. 5A, model-
ing tool 340 may be used by a GUI designer or business
analyst during the application design phase to create a model
representation 502 for a GUI application. It will be under-
stood that modeling environment 516 may include or be com-
patible with various different modeling tools 340 used to
generate model representation 502. This model representa-
tion 502 may be a machine-readable representation of an
application or a domain specific model. Model representation
502 generally encapsulates various design parameters related
to the GUI such as GUI components, dependencies between
the GUI components, inputs and outputs, and the like. Put
another way, model representation 502 provides a form in
which the one or more models can be persisted and trans-
ported, and possibly handled by various tools such as code
generators, runtime interpreters, analysis and validation
tools, merge tools, and the like. In one embodiment, model
representation 502 maybe a collection of XML, documents
with a well-formed syntax.

Tustrated modeling environment 516 also includes an
abstract representation generator (or XGL generator) 504
operable to generate an abstract representation (for example,
XGL representation or XGL-compliant representation) 506

US 9,400,998 B2

19

based upon model representation 502. Abstract representa-
tion generator 504 takes model representation 502 as input
and outputs abstract representation 506 for the model repre-
sentation. Model representation 502 may include multiple
instances of various forms or types depending on the tool/
language used for the modeling. In certain cases, these vari-
ous different model representations may each be mapped to
one or more abstract representations 506. Different types of
model representations may be transformed or mapped to
XGL representations. For each type of model representation,
mapping rules may be provided for mapping the model rep-
resentation to the XGL representation 506. Different map-
ping rules may be provided for mapping a model representa-
tion to an XGL representation.

This XGL representation 506 that is created from a model
representation may then be used for processing in the runtime
environment. For example, the XGL representation 506 may
be used to generate a machine-executable runtime GUI (or
some other runtime representation) that may be executed by a
target device. As part of the runtime processing, the XGL
representation 506 may be transformed into one or more
runtime representations, which may indicate source codein a
particular programming language, machine-executable code
for a specific runtime environment, executable GUI, and so
forth, which may be generated for specific runtime environ-
ments and devices. Since the XGL representation 506, rather
than the design-time model representation, is used by the
runtime environment, the design-time model representation
is decoupled from the runtime environment. The XGL repre-
sentation 506 can thus serve as the common ground or inter-
face between design-time user interface modeling tools and a
plurality of user interface runtime frameworks. It provides a
self-contained, closed, and deterministic definition of all
aspects of a graphical user interface in a device-independent
and programming-language independent manner. Accord-
ingly, abstract representation 506 generated for a model rep-
resentation 502 is generally declarative and executable in that
it provides a representation of the GUI of model representa-
tion 502 that is not dependent on any device or runtime
platform, is not dependent on any programming language,
and unambiguously encapsulates execution semantics for the
GUI. The execution semantics may include, for example,
identification of various components of the GUI, interpreta-
tion of connections between the various GUI components,
information identifying the order of sequencing of events,
rules governing dynamic behavior of the GUI, rules govern-
ing handling of values by the GUI, and the like. The abstract
representation 506 is also not GUI runtime-platform specific.
The abstract representation 506 provides a self-contained,
closed, and deterministic definition of all aspects of a graphi-
cal user interface that is device independent and language
independent.

Abstract representation 506 is such that the appearance and
execution semantics of a GUI generated from the XGL rep-
resentation work consistently on different target devices irre-
spective of the GUI capabilities of the target device and the
target device platform. For example, the same XGL represen-
tation may be mapped to appropriate GUIs on devices of
differing levels of GUI complexity (i.e., the same abstract
representation may be used to generate a GUI for devices that
support simple GUIs and for devices that can support com-
plex GUIs), the GUI generated by the devices are consistent
with each other in their appearance and behavior.

Abstract representation generator 504 may be configured
to generate abstract representation 506 for models of different
types, which may be created using different modeling tools
340. It will be understood that modeling environment 516

20

35

40

45

50

20

may include some, none, or other sub-modules or compo-
nents as those shown in this example illustration. In other
words, modeling environment 516 encompasses the design-
time environment (with or without the abstract generator or
the various representations), a modeling toolkit (such as 340)
linked with a developer’s space, or any other appropriate
software operable to decouple models created during design-
time from the runtime environment. Abstract representation
506 provides an interface between the design time environ-
ment and the runtime environment. As shown, this abstract
representation 506 may then be used by runtime processing.

As part of runtime processing, modeling environment 516
may include various runtime tools 508 and may generate
different types of runtime representations based upon the
abstract representation 506. Examples of runtime representa-
tions include device or language-dependent (or specific)
source code, runtime platform-specific machine-readable
code, GUIs for a particular target device, and the like. The
runtime tools 508 may include compilers, interpreters, source
code generators, and other such tools that are configured to
generate runtime platform-specific or target device-specific
runtime representations of abstract representation 506. The
runtime tool 508 may generate the runtime representation
from abstract representation 506 using specific rules that map
abstract representation 506 to a particular type of runtime
representation. These mapping rules may be dependent on the
type of runtime tool, characteristics of the target device to be
used for displaying the GUI, runtime platform, and/or other
factors. Accordingly, mapping rules may be provided for
transforming the abstract representation 506 to any number of
target runtime representations directed to one or more target
GUI runtime platforms. For example, XGL-compliant code
generators may conform to semantics of XGL, as described
below. XGL-compliant code generators may ensure that the
appearance and behavior of the generated user interfaces is
preserved across a plurality of target GUI frameworks, while
accommodating the differences in the intrinsic characteristics
of'each and also accommodating the different levels of capa-
bility of target devices.

For example, as depicted in example FIG. 5A, an XGL-to-
Java compiler 508 A may take abstract representation 506 as
input and generate Java code 510 for execution by a target
device comprising a Java runtime 512. Java runtime 512 may
execute Java code 510 to generate or display a GUI 514 on a
Java-platform target device. As another example, an XGL-to-
Flash compiler 508B may take abstract representation 506 as
input and generate Flash code 526 for execution by a target
device comprising a Flash runtime 518. Flash runtime 518
may execute Flash code 516 to generate or display a GUI 520
on a target device comprising a Flash platform. As another
example, an XGL-to-DHTML (dynamic HTML) interpreter
508C may take abstract representation 506 as input and gen-
erate DHTML statements (instructions) on the fly which are
then interpreted by a DHTML runtime 522 to generate or
display a GUI 524 on a target device comprising a DHTML
platform.

It should be apparent that abstract representation 506 may
be used to generate GUIs for Extensible Application Markup
Language (XAML) or various other runtime platforms and
devices. The same abstract representation 506 may be
mapped to various runtime representations and device-spe-
cific and runtime platform-specific GUIs. In general, in the
runtime environment, machine executable instructions spe-
cific to a runtime environment may be generated based upon
the abstract representation 506 and executed to generate a
GUI in the runtime environment. The same XGL representa-

US 9,400,998 B2

21

tion may be used to generate machine executable instructions
specific to different runtime environments and target devices.

According to certain embodiments, the process of mapping
a model representation 502 to an abstract representation 506
and mapping an abstract representation 506 to some runtime
representation may be automated. For example, design tools
may automatically generate an abstract representation for the
model representation using XGL and then use the XGL
abstract representation to generate GUIs that are customized
for specific runtime environments and devices. As previously
indicated, mapping rules may be provided for mapping model
representations to an XGL representation. Mapping rules
may also be provided for mapping an XGL representation to
a runtime platform-specific representation.

Since the runtime environment uses abstract representation
506 rather than model representation 502 for runtime pro-
cessing, the model representation 502 that is created during
design-time is decoupled from the runtime environment.
Abstract representation 506 thus provides an interface
between the modeling environment and the runtime environ-
ment. As a result, changes may be made to the design time
environment, including changes to model representation 502
or changes that affect model representation 502, generally to
not substantially affect or impact the runtime environment or
tools used by the runtime environment. Likewise, changes
may be made to the runtime environment generally to not
substantially affect or impact the design time environment. A
designer or other developer can thus concentrate on the
design aspects and make changes to the design without hav-
ing to worry about the runtime dependencies such as the
target device platform or programming language dependen-
cies.

FIG. 5B depicts an example process for mapping a model
representation 502 to a runtime representation using the
example modeling environment 516 of FIG. 5A or some other
modeling environment. Model representation 502 may com-
prise one or more model components and associated proper-
ties that describe a data object, such as hosted business objects
and interfaces. As described above, at least one of these model
components is based on or otherwise associated with these
hosted business objects and interfaces. The abstract represen-
tation 506 is generated based upon model representation 502.
Abstract representation 506 may be generated by the abstract
representation generator 504. Abstract representation 506
comprises one or more abstract GUI components and prop-
erties associated with the abstract GUI components. As part
of generation of abstract representation 506, the model GUI
components and their associated properties from the model
representation are mapped to abstract GUI components and
properties associated with the abstract GUI components.
Various mapping rules may be provided to facilitate the map-
ping. The abstract representation encapsulates both appear-
ance and behavior of a GUI. Therefore, by mapping model
components to abstract components, the abstract representa-
tion not only specifies the visual appearance of the GUI but
also the behavior of the GUI, such as in response to events
whether clicking/dragging or scrolling, interactions between
GUI components and such.

One or more runtime representations 550a, including GUTs
for specific runtime environment platforms, may be gener-
ated from abstract representation 506. A device-dependent
runtime representation may be generated for a particular type
of target device platform to be used for executing and dis-
playing the GUI encapsulated by the abstract representation.
The GUIs generated from abstract representation 506 may
comprise various types of GUI elements such as buttons,
windows, scrollbars, input boxes, etc. Rules may be provided

10

15

20

25

30

35

40

45

50

55

60

65

22

for mapping an abstract representation to a particular runtime
representation. Various mapping rules may be provided for
different runtime environment platforms.

Methods and systems consistent with the subject matter
described herein provide and use interfaces 320 derived from
the business object model 318 suitable for use with more than
one business area, for example different departments within a
company such as finance, or marketing. Also, they are suit-
able across industries and across businesses. Interfaces 320
are used during an end-to-end business transaction to transfer
business process information in an application-independent
manner. For example the interfaces can be used for fulfilling
a sales order.

1. Message Overview

To perform an end-to-end business transaction, consistent
interfaces are used to create business documents that are sent
within messages between heterogeneous programs or mod-
ules.

a) Message Categories

As depicted in FIG. 6, the communication between a
sender 602 and a recipient 604 can be broken down into basic
categories that describe the type of the information
exchanged and simultaneously suggest the anticipated reac-
tion of the recipient 604. A message category is a general
business classification for the messages. Communication is
sender-driven. In other words, the meaning of the message
categories is established or formulated from the perspective
of the sender 602. The message categories include informa-
tion 606, notification 608, query 610, response 612, request
614, and confirmation 616.

(1) Information

Information 606 is a message sent from a sender 602 to a
recipient 604 concerning a condition or a statement of affairs.
No reply to information is expected. Information 606 is sent
to make business partners or business applications aware of a
situation. Information 606 is not compiled to be application-
specific. Examples of “information” are an announcement,
advertising, a report, planning information, and a message to
the business warehouse.

(2) Notification

A notification 608 is a notice or message that is geared to a
service. A sender 602 sends the notification 608 to a recipient
604. No reply is expected for a notification. For example, a
billing notification relates to the preparation of an invoice
while a dispatched delivery notification relates to preparation
for receipt of goods.

(3) Query

A query 610 is a question from a sender 602 to a recipient
604 to which aresponse 612 is expected. A query 610 implies
no assurance or obligation on the part of the sender 602.
Examples of a query 610 are whether space is available on a
specific flight or whether a specific product is available. These
queries do not express the desire for reserving the flight or
purchasing the product.

(4) Response

A response 612 is a reply to a query 610. The recipient 604
sends the response 612 to the sender 602. A response 612
generally implies no assurance or obligation on the part of the
recipient 604. The sender 602 is not expected to reply.
Instead, the process is concluded with the response 612.
Depending on the business scenario, a response 612 also may
include a commitment, i.e., an assurance or obligation on the
part of the recipient 604. Examples of responses 612 are a
response stating that space is available on a specific flight or
that a specific product is available. With these responses, no
reservation was made.

US 9,400,998 B2

23

(5) Request

A request 614 is a binding requisition or requirement from
a sender 602 to a recipient 604. Depending on the business
scenario, the recipient 604 can respond to a request 614 with
a confirmation 616. The request 614 is binding on the sender
602. In making the request 614, the sender 602 assumes, for
example, an obligation to accept the services rendered in the
request 614 under the reported conditions. Examples of a
request 614 are a parking ticket, a purchase order, an order for
delivery and a job application.

(6) Confirmation

A confirmation 616 is a binding reply that is generally
made to a request 614. The recipient 604 sends the confirma-
tion 616 to the sender 602. The information indicated in a
confirmation 616, such as deadlines, products, quantities and
prices, can deviate from the information of the preceding
request 614. A request 614 and confirmation 616 may be used
in negotiating processes. A negotiating process can consist of
a series of several request 614 and confirmation 616 mes-
sages. The confirmation 616 is binding on the recipient 604.
For example, 100 units of X may be ordered in a purchase
order request; however, only the delivery of 80 units is con-
firmed in the associated purchase order confirmation.

b) Message Choreography

A message choreography is a template that specifies the
sequence of messages between business entities during a
given transaction. The sequence with the messages contained
in it describes in general the message “lifecycle” as it pro-
ceeds between the business entities. If messages from a cho-
reography are used in a business transaction, they appear in
the transaction in the sequence determined by the choreogra-
phy. This illustrates the template character of a choreography,
i.e., during an actual transaction, it is not necessary for all
messages of the choreography to appear. Those messages that
are contained in the transaction, however, follow the
sequence within the choreography. A business transaction is
thus a derivation of a message choreography. The choreogra-
phy makes it possible to determine the structure of the indi-
vidual message types more precisely and distinguish them
from one another.

2. Components of the Business Object Model

The overall structure of the business object model ensures
the consistency of the interfaces that are derived from the
business object model. The derivation ensures that the same
business-related subject matter or concept is represented and
structured in the same way in all interfaces.

The business object model defines the business-related
concepts at a central location for a number of business trans-
actions. In other words, it reflects the decisions made about
modeling the business entities of the real world acting in
business transactions across industries and business areas.
The business object model is defined by the business objects
and their relationship to each other (the overall net structure).

Each business object is generally a capsule with an internal
hierarchical structure, behavior offered by its operations, and
integrity constraints. Business objects are semantically dis-
joint, i.e., the same business information is represented once.
In the business object model, the business objects are
arranged in an ordering framework. From left to right, they
are arranged according to their existence dependency to each
other. For example, the customizing eclements may be
arranged on the left side of the business object model, the
strategic elements may be arranged in the center of the busi-
ness object model, and the operative elements may be
arranged on the right side of the business object model. Simi-
larly, the business objects are arranged from the top to the
bottom based on defined order of the business areas, e.g.,

10

20

40

45

55

24

finance could be arranged at the top of the business object
model with CRM below finance and SRM below CRM.

To ensure the consistency of interfaces, the business object
model may be built using standardized data types as well as
packages to group related elements together, and package
templates and entity templates to specify the arrangement of
packages and entities within the structure.

a) Data Types

Data types are used to type object entities and interfaces
with a structure. This typing can include business semantic.
Such data types may include those generally described at
pages 96 through 1642 (which are incorporated by reference
herein) of U.S. patent application Ser. No. 11/803,178, filed
on May 11, 2007 and entitled “Consistent Set Of Interfaces
Derived From A Business Object Model”. For example, the
data type BusinessTransactionDocumentID is a unique iden-
tifier for a document in a business transaction. Also, as an
example, Data type BusinessTransactionDocumentParty
contains the information that is exchanged in business docu-
ments about a party involved in a business transaction, and
includes the party’s identity, the party’s address, the party’s
contact person and the contact person’s address. Busi-
nessTransactionDocumentParty also includes the role of the
party, e.g., a buyer, seller, product recipient, or vendor.

The data types are based on Core Component Types
(“CCTs”), which themselves are based on the World Wide
Web Consortium (“W3C”) data types. “Global” data types
represent a business situation that is described by a fixed
structure. Global data types include both context-neutral
generic data types (“GDTs”) and context-based context data
types (“CDTs”). GDTs contain business semantics, but are
application-neutral, i.e., without context. CDTs, on the other
hand, are based on GDTs and form either a use-specific view
of the GDTs, or a context-specific assembly of GDTs or
CDTs. A message is typically constructed with reference to a
use and is thus a use-specific assembly of GDTs and CDTs.
The data types can be aggregated to complex data types.

To achieve a harmonization across business objects and
interfaces, the same subject matter is typed with the same data
type. For example, the data type “GeoCoordinates™ is built
using the data type “Measure” so that the measures in a
GeoCoordinate (i.e., the latitude measure and the longitude
measure) are represented the same as other “Measures” that
appear in the business object model.

b) Entities

Entities are discrete business elements that are used during
a business transaction. Entities are not to be confused with
business entities or the components that interact to perform a
transaction. Rather, “entities” are one of the layers of the
business object model and the interfaces. For example, a
Catalogue entity is used in a Catalogue Publication Request
and a Purchase Order is used in a Purchase Order Request.
These entities are created using the data types defined above
to ensure the consistent representation of data throughout the
entities.

c) Packages

Packages group the entities in the business object model
and the resulting interfaces into groups of semantically asso-
ciated information. Packages also may include “sub”-pack-
ages, i.e., the packages may be nested.

Packages may group elements together based on different
factors, such as elements that occur together as a rule with
regard to a business-related aspect. For example, as depicted
in FIG. 7, in a Purchase Order, different information regard-
ing the purchase order, such as the type of payment 702, and
payment card 704, are grouped together via the PaymentIn-
formation package 700.

US 9,400,998 B2

25

Packages also may combine different components that
result in a new object. For example, as depicted in FIG. 8, the
components wheels 804, motor 806, and doors 808 are com-
bined to form a composition “Car” 802. The “Car” package
800 includes the wheels, motor and doors as well as the
composition “Car.”

Another grouping within a package may be subtypes
within a type. In these packages, the components are special-
ized forms of a generic package. For example, as depicted in
FIG. 9, the components Car 904, Boat 906, and Truck 908 can
be generalized by the generic term Vehicle 902 in Vehicle
package 900. Vehicle in this case is the generic package 910,
while Car 912, Boat 914, and Truck 916 are the specializa-
tions 918 of the generalized vehicle 910.

Packages also may be used to represent hierarchy levels.
For example, as depicted in FIG. 10, the Item Package 1000
includes Item 1002 with subitem xxx 1004, subitem yyy
1006, and subitem zzz 1008.

Packages can be represented in the XML schema as a
comment. One advantage of this grouping is that the docu-
ment structure is easier to read and is more understandable.
The names of these packages are assigned by including the
object name in brackets with the suffix ‘“Package” For
example, as depicted in FIG. 11, Party package 1100 is
enclosed by <PartyPackage> 1102 and </PartyPackage>
1104. Party package 1100 illustratively includes a Buyer
Party 1106, identified by <BuyerParty> 1108 and </Buyer-
Party> 1110, and a Seller Party 1112, identified by <Seller-
Party> 1114 and </SellerParty>, etc.

d) Relationships

Relationships describe the interdependencies of the enti-
ties in the business object model, and are thus an integral part
of the business object model.

(1) Cardinality of Relationships

FIG. 12 depicts a graphical representation of the cardinali-
ties between two entities. The cardinality between a first
entity and a second entity identifies the number of second
entities that could possibly exist for each first entity. Thus, a
1:c cardinality 1200 between entities A 1202 and X 1204
indicates that for each entity A 1202, there is either one or zero
1206 entity X 1204. A 1:1 cardinality 1208 between entities A
1210 and X 1212 indicates that for each entity A 1210, there
is exactly one 1214 entity X 1212. A 1:n cardinality 1216
between entities A 1218 and X 1220 indicates that for each
entity A 1218, there are one or more 1222 entity Xs 1220. A
1:cn cardinality 1224 between entities A 1226 and X 1228
indicates that for each entity A 1226, there are any number
1230 of entity Xs 1228 (i.e., 0 through n Xs for each A).

(2) Types of Relationships

(a) Composition

A composition or hierarchical relationship type is a strong
whole-part relationship which is used to describe the struc-
ture within an object. The parts, or dependent entities, repre-
sent a semantic refinement or partition of the whole, or less
dependent entity. For example, as depicted in FIG. 13, the
components 1302, wheels 1304, and doors 1306 may be
combined to form the composite 1300 “Car” 1308 using the
composition 1310. FIG. 14 depicts a graphical representation
of the composition 1410 between composite Car 1408 and
components wheel 1404 and door 1406.

(b) Aggregation

An aggregation or an aggregating relationship type is a
weak whole-part relationship between two objects. The
dependent object is created by the combination of one or
several less dependent objects. For example, as depicted in
FIG. 15, the properties of a competitor product 1500 are
determined by a product 1502 and a competitor 1504. A

10

15

20

25

30

35

40

45

50

55

60

65

26

hierarchical relationship 1506 exists between the product
1502 and the competitor product 1500 because the competitor
product 1500 is a component of the product 1502. Therefore,
the values of the attributes of the competitor product 1500 are
determined by the product 1502. An aggregating relationship
1508 exists between the competitor 1504 and the competitor
product 1500 because the competitor product 1500 is differ-
entiated by the competitor 1504. Therefore the values of the
attributes of the competitor product 1500 are determined by
the competitor 1504.

(c) Association

An association or a referential relationship type describes a
relationship between two objects in which the dependent
object refers to the less dependent object. For example, as
depicted in FIG. 16, a person 1600 has a nationality, and thus,
has a reference to its country 1602 of origin. There is an
association 1604 between the country 1602 and the person
1600. The values of the attributes of the person 1600 are not
determined by the country 1602.

(3) Specialization

Entity types may be divided into subtypes based on char-
acteristics of the entity types. For example, FIG. 17 depicts an
entity type “vehicle” 1700 specialized 1702 into subtypes
“truck” 1704, “car” 1706, and “ship” 1708. These subtypes
represent different aspects or the diversity of the entity type.

Subtypes may be defined based on related attributes. For
example, although ships and cars are both vehicles, ships have
an attribute, “draft,” that is not found in cars. Subtypes also
may be defined based on certain methods that can be applied
to entities of this subtype and that modify such entities. For
example, “drop anchor” can be applied to ships. If outgoing
relationships to a specific object are restricted to a subset, then
a subtype can be defined which reflects this subset.

As depicted in FIG. 18, specializations may further be
characterized as complete specializations 1800 or incomplete
specializations 1802. There is a complete specialization 1800
where each entity of the generalized type belongs to at least
one subtype. With an incomplete specialization 1802, there is
at least one entity that does not belong to a subtype. Special-
izations also may be disjoint 1804 or nondisjoint 1806. In a
disjoint specialization 1804, each entity of the generalized
type belongs to a maximum of one subtype. With a nondis-
joint specialization 1806, one entity may belong to more than
one subtype. As depicted in FIG. 18, four specialization cat-
egories result from the combination of the specialization
characteristics.

e) Structural Patterns

(1) Item

An item is an entity type which groups together features of
another entity type. Thus, the features for the entity type chart
of'accounts are grouped together to form the entity type chart
of'accounts item. For example, a chart of accounts item is a
category of values or value flows that can be recorded or
represented in amounts of money in accounting, while a chart
of accounts is a superordinate list of categories of values or
value flows that is defined in accounting.

The cardinality between an entity type and its item is often
either 1:n or 1:cn. For example, in the case of the entity type
chart of accounts, there is a hierarchical relationship of the
cardinality 1:n with the entity type chart of accounts item
since a chart of accounts has at least one item in all cases.

(2) Hierarchy

A hierarchy describes the assignment of subordinate enti-
ties to superordinate entities and vice versa, where several
entities of the same type are subordinate entities that have, at
most, one directly superordinate entity. For example, in the
hierarchy depicted in FIG. 19, entity B 1902 is subordinate to

US 9,400,998 B2

27

entity A 1900, resulting in the relationship (A,B) 1912. Simi-
larly, entity C 1904 is subordinate to entity A 1900, resulting
in the relationship (A,C) 1914. Entity D 1906 and entity E
1908 are subordinate to entity B 1902, resulting in the rela-
tionships (B,D) 1916 and (B,E) 1918, respectively. Entity F
1910 is subordinate to entity C 1904, resulting in the relation-
ship (C,F) 1920.

Because each entity has at most one superordinate entity,
the cardinality between a subordinate entity and its superor-
dinate entity is 1:c. Similarly, each entity may have 0, 1 or
many subordinate entities. Thus, the cardinality between a
superordinate entity and its subordinate entity is 1:cn. FIG. 20
depicts a graphical representation of a Closing Report Struc-
ture Item hierarchy 2000 for a Closing Report Structure Item
2002. The hierarchy illustrates the l:c cardinality 2004
between a subordinate entity and its superordinate entity, and
the 1:cn cardinality 2006 between a superordinate entity and
its subordinate entity.

3. Creation of the Business Object Model

FIGS. 21A-B depict the steps performed using methods
and systems consistent with the subject matter described
herein to create a business object model. Although some steps
are described as being performed by a computer, these steps
may alternatively be performed manually, or computer-as-
sisted, or any combination thereof. Likewise, although some
steps are described as being performed by a computer, these
steps may also be computer-assisted, or performed manually,
or any combination thereof.

As discussed above, the designers create message chore-
ographies that specify the sequence of messages between
business entities during a transaction. After identifying the
messages, the developers identify the fields contained in one
of the messages (step 2100, FIG. 21A). The designers then
determine whether each field relates to administrative data or
is part of the object (step 2102). Thus, the first eleven fields
identified below in the left column are related to administra-
tive data, while the remaining fields are part of the object.

MessageID Admin
ReferencelD
CreationDate

SenderID
AdditionalSenderID
ContactPersonID
SenderAddress
RecipientID
AdditionalRecipientID
ContactPersonID
RecipientAddress

D Main Object
AdditionallD
PostingDate
LastChangeDate
AcceptanceStatus

Note
CompleteTransmission Indicator
Buyer
BuyerOrganisationName
Person Name
FunctionalTitle
DepartmentName
CountryCode
StreetPostalCode
POBox Postal Code
Company Postal Code
City Name

DistrictName

PO Box ID

PO Box Indicator

PO Box Country Code
PO Box Region Code

10

15

20

25

30

35

40

45

50

55

60

65

28

-continued

PO Box City Name
Street Name

House ID

Building ID

Floor ID

Room ID

Care Of Name
AddressDescription
Telefonnumber
MobileNumber
Facsimile

Email

Seller

SellerAddress
Location
LocationType
DeliveryItemGroupID
DeliveryPriority
DeliveryCondition
TransferLocation
NumberofPartialDelivery
QuantityTolerance
MaximumLeadTime
TransportServiceLevel
TranportCondition
TransportDescription
CashDiscountTerms
PaymentForm
PaymentCardID
PaymentCardReferenceID
SequencelD

Holder
ExpirationDate
AttachmentID
AttachmentFilename
DescriptionofMessage
ConfirmationDescriptionof Message
FollowUpActivity
ItemID

ParentItemID
HierarchyType
ProductID
ProductType
ProductNote
ProductCategoryID
Amount
BaseQuantity
Confirmed Amount
ConfirmedBaseQuantity
ItemBuyer
ItemBuyerOrganisationName
Person Name
FunctionalTitle
DepartmentName
CountryCode
StreetPostalCode
POBox Postal Code
Company Postal Code
City Name
DistrictName

PO Box ID

PO Box Indicator

PO Box Country Code
PO Box Region Code
PO Box City Name
Street Name

House ID

Building ID

Floor ID

Room ID

Care Of Name
AddressDescription
Telefonnumber
MobilNumber
Facsimile

Email

ItemSeller
ItemSellerAddress
ItemLocation

29

-continued

US 9,400,998 B2

30

-continued

ItemLocationType
ItemDeliveryltemGroupID
ItemDeliveryPriority
ItemDeliveryCondition
ItemTransferLocation
ItemNumberofPartialDelivery
ItemQuantity Tolerance
ItemMaximumLeadTime
ItemTransportServiceLevel
Item TranportCondition
ItemTransportDescription
ContractReference
QuoteReference
CatalogueReference
ItemAttachmentID
ItemAttachmentFilename
ItemDescription
ScheduleLineID
DeliveryPeriod

Quantity
ConfirmedScheduleLineID

10

15

ConfirmedDeliveryPeriod
ConfirmedQuantity

Next, the designers determine the proper name for the
object according to the ISO 11179 naming standards (step
2104). In the example above, the proper name for the “Main
Object” is “Purchase Order.”” After naming the object, the
system that is creating the business object model determines
whether the object already exists in the business object model
(step 2106). If the object already exists, the system integrates
new attributes from the message into the existing object (step
2108), and the process is complete.

If at step 2106 the system determines that the object does
not exist in the business object model, the designers model the
internal object structure (step 2110). To model the internal
structure, the designers define the components. For the above
example, the designers may define the components identified
below.

D

Purchase

AdditionalID
PostingDate
LastChangeDate
AcceptanceStatus
Note
CompleteTransmission
Indicator

Buyer
BuyerOrganisationName
Person Name
Functional Title
DepartmentName
CountryCode
StreetPostalCode
POBox Postal Code
Company Postal Code
City Name
DistrictName

PO Box ID

PO Box Indicator

PO Box Country Code
PO Box Region Code
PO Box City Name
Street Name

House ID

Building ID

Floor ID

Room ID

Care Of Name
AddressDescription
Telefonnumber
MobileNumber
Facsimile

Email

Seller

SellerAddress
Location
LocationType
DeliveryItemGroupID
DeliveryPriority
DeliveryCondition
TransferLocation
NumberofPartialDelivery
QuantityTolerance
MaximumLeadTime
TransportServiceLevel
TranportCondition
TransportDescription
CashDiscountTerms
PaymentForm
PaymentCardID
PaymentCardReferenceID
SequencelD

Holder

Order

Buyer

Seller
Location

DeliveryTerms

Payment

US 9,400,998 B2
31 32

-continued

ExpirationDate
AttachmentID
AttachmentFilename
DescriptionofMessage
ConfirmationDescriptionof
Message
FollowUpActivity
ItemID

ParentItemID
HierarchyType
ProductID

ProductType
ProductNote
ProductCategoryID
Amount

BaseQuantity

Confirmed Amount
ConfirmedBaseQuantity
ItemBuyer
ItemBuyerOrganisation
Name

Person Name
FunctionalTitle
DepartmentName
CountryCode
StreetPostalCode
POBox Postal Code
Company Postal Code
City Name

DistrictName

PO Box ID

PO Box Indicator

PO Box Country Code
PO Box Region Code
PO Box City Name
Street Name

House ID

Building ID

Floor ID

Room ID

Care Of Name
AddressDescription
Telefonnumber
MobilNumber

Facsimile

Email

ItemSeller
ItemSellerAddress
ItemLocation
ItemLocation Type
ItemDeliveryltemGroupID
ItemDeliveryPriority
ItemDeliveryCondition
ItemTransferLocation
ItemNumberofPartial
Delivery
ItemQuantityTolerance
ItemMaximumLeadTime
ItemTransportServiceLevel
ItemTranportCondition
ItemTransportDescription
ContractReference
QuoteReference
CatalogueReference
ItemAttachmentID
ItemAttachmentFilename
ItemDescription
ScheduleLineID
DeliveryPeriod

Quantity
ConfirmedScheduleLineID
ConfirmedDeliveryPeriod
ConfirmedQuantity

Purchase Order
Item

Product

ProductCategory

Buyer

Seller

Location

Contract
Quote
Catalogue

US 9,400,998 B2

33 34
During the step of modeling the internal structure, the tifying the compositions of the components and the corre-
designers also model the complete internal structure by iden- sponding cardinalities, as shown below.
PurchaseOrder 1
Buyer 0...1
Address 0...1
ContactPerson 0...1
Address 0...1
Seller 0...1
Location 0...1
Address 0...1
DeliveryTerms 0...1
Incoterms 0...1
PartialDelivery 0...1
QuantityTolerance 0...1
Transport 0...1
CashDiscountTerms 0...1
MaximumCashDiscount 0...1
NormalCashDiscount 0...1
PaymentForm 0...1
PaymentCard 0...1
Attachment 0...n
Description 0...1
Confirmation 0...1
Description
Item 0...n
HierarchyRelationship 0...1
Product 0...1
ProductCategory 0...1
Price 0...1
NetunitPrice 0...1
ConfirmedPrice 0...1
NetunitPrice 0...1
Buyer 0...1
Seller 0...1
Location 0...1
DeliveryTerms 0...1
Attachment 0...n
Description 0...1
ConfirmationDescription 0...1
ScheduleLine 0...n
DeliveryPeriod 1
ConfirmedScheduleLine 0...n

After modeling the internal object structure, the developers

40 identify the subtypes and generalizations for all objects and

components (step 2112). For example, the Purchase Order

may have subtypes Purchase Order Update, Purchase Order

Cancellation and Purchase Order Information. Purchase

Order Update may include Purchase Order Request, Purchase

Order Change, and Purchase Order Confirmation. Moreover,

45 Party may be identified as the generalization of Buyer and

Seller. The subtypes and generalizations for the above
example are shown below.

PurchaseOrder 1
PurchaseOrder
Update
PurchaseOrder Request
PurchaseOrder Change
PurchaseOrder
Confirmation
PurchaseOrder
Cancellation
PurchaseOrder
Information
Party
BuyerParty 0...1
Address 0...1
ContactPerson 0...1
Address 0...1
SellerParty 0...1

US 9,400,998 B2

35 36
-continued
Location
ShipToLocation 0...1
Address 0...1
ShipFromLocation 0...1
Address 0...1
DeliveryTerms 0...1
Incoterms 0...1
PartialDelivery 0...1
QuantityTolerance 0...1
Transport 0...1
CashDiscount 0...1
Terms
MaximumCash Discount 0...1
NormalCashDiscount 0...1
PaymentForm 0...1
PaymentCard 0...1
Attachment 0...n
Description 0...1
Confirmation 0...1
Description
Item 0...n
HierarchyRelationship 0...1
Product 0...1
ProductCategory 0...1
Price 0...1
NetunitPrice 0...1
ConfirmedPrice 0...1
NetunitPrice 0...1
Party
BuyerParty 0...1
SellerParty 0...1
Location
ShipTo 0...1
Location
ShipFrom 0...1
Location
DeliveryTerms 0...1
Attachment 0...n
Description 0...1
Confirmation 0...1
Description
ScheduleLine 0...n
Delivery 1
Period
ConfirmedScheduleLine 0...n
40
After identifying the subtypes and generalizations, the 2114). The attributes for a portion of the components are
developers assign the attributes to these components (step shown below.
PurchaseOrder 1
D 1
SellerID 0...1
BuyerPostingDateTime 0...1
BuyerLastChangeDateTime 0...1
SellerPostingDateTime 0...1
SellerLastChangeDateTime 0...1
AcceptanceStatusCode 0...1
Note 0...1
ItemListComplete TransmissionIndicator 0...1
BuyerParty 0...1
StandardID 0...n
BuyerID 0...1
SellerID 0...1
Address 0...1
ContactPerson 0...1
BuyerID 0...1
SellerID 0...1
Address 0...1
SellerParty 0...1
ProductRecipientParty 0...1
VendorParty 0...1
ManufacturerParty 0...1
BillToParty 0...1
PayerParty 0...1

US 9,400,998 B2

38

37
-continued

CarrierParty

ShipToLocation
StandardID
BuyerID
SellerID
Address

ShipFromLocation

coococ o000
N

The system then determines whether the component is one
of the object nodes in the business object model (step 2116,
FIG. 21B). If the system determines that the component is one
of the object nodes in the business object model, the system
integrates a reference to the corresponding object node from
the business object model into the object (step 2118). In the
above example, the system integrates the reference to the
Buyer party represented by an ID and the reference to the
ShipToLocation represented by an into the object, as shown
below. The attributes that were formerly located in the Pur-
chaseOrder object are now assigned to the new found object
party. Thus, the attributes are removed from the PurchaseOr-
der object.

PurchaseOrder

1D
SellerID
BuyerPostingDateTime
BuyerLastChangeDateTime
SellerPostingDateTime
SellerLastChangeDateTime
AcceptanceStatusCode
Note
ItemListComplete
TransmissionIndicator
BuyerParty

1D
SellerParty
ProductRecipientParty
VendorParty
ManufacturerParty
BillToParty
PayerParty
CarrierParty
ShipToLocation

1D
ShipFromLocation

During the integration step, the designers classify the rela-
tionship (i.e., aggregation or association) between the object
node and the object being integrated into the business object
model. The system also integrates the new attributes into the
object node (step 2120). If at step 2116, the system deter-
mines that the component is not in the business object model,
the system adds the component to the business object model
(step 2122).

Regardless of whether the component was in the business
object model at step 2116, the next step in creating the busi-
ness object model is to add the integrity rules (step 2124).
There are several levels of integrity rules and constraints
which should be described. These levels include consistency
rules between attributes, consistency rules between compo-
nents, and consistency rules to other objects. Next, the
designers determine the services offered, which can be
accessed via interfaces (step 2126). The services offered in
the example above include PurchaseOrderCreateRequest,
PurchaseOrderCancellationRequest, and PurchaseOrderRe-
leaseRequest. The system then receives an indication of the
location for the object in the business object model (step

10

15

20

25

30

35

40

45

50

55

60

65

2128). After receiving the indication of the location, the sys-
tem integrates the object into the business object model (step
2130).

4. Structure of the Business Object Model

The business object model, which serves as the basis for the
process of generating consistent interfaces, includes the ele-
ments contained within the interfaces. These elements are
arranged in a hierarchical structure within the business object
model.

5. Interfaces Derived from Business Object Model

Interfaces are the starting point of the communication
between two business entities. The structure of each interface
determines how one business entity communicates with
another business entity. The business entities may act as a
unified whole when, based on the business scenario, the busi-
ness entities know what an interface contains from a business
perspective and how to fill the individual elements or fields of
the interface. As illustrated in FIG. 27A, communication
between components takes place via messages that contain
business documents (e.g., business document 27002). The
business document 27002 ensures a holistic business-related
understanding for the recipient of the message. The business
documents are created and accepted or consumed by inter-
faces, specifically by inbound and outbound interfaces. The
interface structure and, hence, the structure of the business
document are derived by a mapping rule. This mapping rule is
known as “hierarchization.” An interface structure thus has a
hierarchical structure created based on the leading business
object 27000. The interface represents a usage-specific, hier-
archical view of the underlying usage-neutral object model.

As illustrated in FIG. 27B, several business document
objects 27006, 27008, and 27010 as overlapping views may
be derived for a given leading object 27004. Each business
document object results from the object model by hier-
archization.

To illustrate the hierarchization process, FIG. 27C depicts
an example of an object model 27012 (i.e., a portion of the
business object model) that is used to derive a service opera-
tion signature (business document object structure). As
depicted, leading object X 27014 in the object model 27012 is
integrated in a net of object A 27016, object B 27018, and
object C 27020. Initially, the parts of the leading object 27014
that are required for the business object document are
adopted. In one variation, all parts required for a business
document object are adopted from leading object 27014
(making such an operation a maximal service operation).
Based on these parts, the relationships to the superordinate
objects (i.e., objects A, B, and C from which object X
depends) are inverted. In other words, these objects are
adopted as dependent or subordinate objects in the new busi-
ness document object.

For example, object A 27016, object B 27018, and object C
27020 have information that characterize object X. Because
object A 27016, object B 27018, and object C 27020 are
superordinate to leading object X 27014, the dependencies of
these relationships change so that object A 27016, object B
27018, and object C 27020 become dependent and subordi-

US 9,400,998 B2

39

nate to leading object X 27014. This procedure is known as
“derivation of the business document object by hierarchiza-
tion.”

Business-related objects generally have an internal struc-
ture (parts). This structure can be complex and reflect the
individual parts of an object and their mutual dependency.
When creating the operation signature, the internal structure
of an object is strictly hierarchized. Thus, dependent parts
keep their dependency structure, and relationships between
the parts within the object that do not represent the hierarchi-
cal structure are resolved by prioritizing one of the relation-
ships.

Relationships of object X to external objects that are ref-
erenced and whose information characterizes object X are
added to the operation signature. Such a structure can be quite
complex (see, for example, FIG. 27D). The cardinality to
these referenced objects is adopted as 1:1 or 1:C, respectively.
By this, the direction of the dependency changes. The
required parts of this referenced object are adopted identi-
cally, both in their cardinality and in their dependency
arrangement.

The newly created business document object contains all
required information, including the incorporated master data
information of the referenced objects. As depicted in FIG.
27D, components Xi in leading object X 27022 are adopted
directly. The relationship of object X 27022 to object A
27024, object B 27028, and object C 27026 are inverted, and
the parts required by these objects are added as objects that
depend from object X 27022. As depicted, all of object A
27024 is adopted. B3 and B4 are adopted from object B
27028, but B1 is not adopted. From object C 27026, C2 and
C1 are adopted, but C3 is not adopted.

FIG. 27E depicts the business document object X 27030
created by this hierarchization process. As shown, the
arrangement of the elements corresponds to their dependency
levels, which directly leads to a corresponding representation
as an XML structure 27032.

The following provides certain rules that can be adopted
singly or in combination with regard to the hierarchization
process. A business document object always refers to a lead-
ing business document object and is derived from this object.
The name of the root entity in the business document entity is
the name of'the business object or the name of'a specialization
of the business object or the name of a service specific view
onto the business object. The nodes and elements of the
business object that are relevant (according to the semantics
of the associated message type) are contained as entities and
elements in the business document object.

The name of a business document entity is predefined by
the name of the corresponding business object node. The
name of the superordinate entity is not repeated in the name of
the business document entity. The “full” semantic name
results from the concatenation of the entity names along the
hierarchical structure of the business document object.

The structure of the business document object is, except for
deviations due to hierarchization, the same as the structure of
the business object. The cardinalities of the business docu-
ment object nodes and elements are adopted identically or
more restrictively to the business document object. An object
from which the leading business object is dependent can be
adopted to the business document object. For this arrange-
ment, the relationship is inverted, and the object (or its parts,
respectively) are hierarchically subordinated in the business
document object.

Nodes in the business object representing generalized busi-
ness information can be adopted as explicit entities to the
business document object (generally speaking, multiply

10

15

20

25

30

35

40

45

50

55

60

65

40

TypeCodes out). When this adoption occurs, the entities are
named according to their more specific semantic (name of
TypeCode becomes prefix). Party nodes of the business object
are modeled as explicit entities for each party role in the
business document object. These nodes are given the name
<Prefix><Party Role>Party, for example, BuyerParty, Item-
BuyerParty. BTDReference nodes are modeled as separate
entities for each reference type in the business document
object. These nodes are given the name
<Qualifier><BO><Node>Reference, for example SalesOr-
derReference, OriginSalesOrderReference, SalesOrderltem-
Reference. A product node in the business object comprises
all of the information on the Product, ProductCategory, and
Batch. This information is modeled in the business document
object as explicit entities for Product, ProductCategory, and
Batch.

Entities which are connected by a 1:1 relationship as a
result of hierarchization can be combined to a single entity, if
they are semantically equivalent. Such a combination can
often occurs if a node in the business document object that
results from an assignment node is removed because it does
not have any elements.

The message type structure is typed with data types. Ele-
ments are typed by GDTs according to their business objects.
Aggregated levels are typed with message type specific data
types (Intermediate Data Types), with their names being built
according to the corresponding paths in the message type
structure. The whole message type structured is typed by a
message data type with its name being built according to the
root entity with the suffix “Message”. For the message type,
the message category (e.g., information, notification, query,
response, request, confirmation, etc.) is specified according to
the suited transaction communication pattern.

In one variation, the derivation by hierarchization can be
initiated by specitying a leading business object and a desired
view relevant for a selected service operation. This view
determines the business document object. The leading busi-
ness object can be the source object, the target object, or a
third object. Thereafter, the parts of the business object
required for the view are determined. The parts are connected
to the root node via a valid path along the hierarchy. There-
after, one or more independent objects (object parts, respec-
tively) referenced by the leading object which are relevant for
the service may be determined (provided that a relationship
exists between the leading object and the one or more inde-
pendent objects).

Once the selection is finalized, relevant nodes of the lead-
ing object node that are structurally identical to the message
type structure can then be adopted. If nodes are adopted from
independent objects or object parts, the relationships to such
independent objects or object parts are inverted. Lineariza-
tion can occur such that a business object node containing
certain TypeCodes is represented in the message type struc-
ture by explicit entities (an entity for each value of the Type-
Code). The structure can be reduced by checking all 1:1
cardinalities in the message type structure. Entities can be
combined if they are semantically equivalent, one of the enti-
ties carries no elements, or an entity solely results from ann:m
assignment in the business object.

After the hierarchization is completed, information regard-
ing transmission of the business document object (e.g.,
CompleteTransmissionIndicator, ActionCodes, message cat-
egory, etc.) can be added. A standardized message header can
be added to the message type structure and the message
structure can be typed. Additionally, the message category for
the message type can be designated.

US 9,400,998 B2

41

Invoice Request and Invoice Confirmation are examples of
interfaces. These invoice interfaces are used to exchange
invoices and invoice confirmations between an invoicing
party and an invoice recipient (such as between a seller and a
buyer) in a B2B process. Companies can create invoices in
electronic as well as in paper form. Traditional methods of
communication, such as mail or fax, for invoicing are cost
intensive, prone to error, and relatively slow, since the data is
recorded manually. Electronic communication eliminates
such problems. The motivating business scenarios for the
Invoice Request and Invoice Confirmation interfaces are the
Procure to Stock (PTS) and Sell from Stock (SFS) scenarios.
In the PTS scenario, the parties use invoice interfaces to
purchase and settle goods. In the SFS scenario, the parties use
invoice interfaces to sell and invoice goods. The invoice inter-
faces directly integrate the applications implementing them
and also form the basis for mapping data to widely-used XML
standard formats such as RosettaNet, PIDX, xCBL, and
CIDX.

The invoicing party may use two different messages to map
a B2B invoicing process: (1) the invoicing party sends the
message type InvoiceRequest to the invoice recipient to start
a new invoicing process; and (2) the invoice recipient sends
the message type InvoiceConfirmation to the invoicing party
to confirm or reject an entire invoice or to temporarily assign
it the status “pending.”

An InvoiceRequest is a legally binding notification of
claims or liabilities for delivered goods and rendered ser-
vices—usually, a payment request for the particular goods
and services. The message type InvoiceRequest is based on
the message data type InvoiceMessage. The InvoiceRequest
message (as defined) transfers invoices in the broader sense.
This includes the specific invoice (request to settle a liability),
the debit memo, and the credit memo.

InvoiceConfirmation is a response sent by the recipient to
the invoicing party confirming or rejecting the entire invoice
received or stating that it has been assigned temporarily the
status “pending.” The message type InvoiceConfirmation is
based on the message data type InvoiceMessage. An Invoice-
Confirmation is not mandatory in a B2B invoicing process,
however, it automates collaborative processes and dispute
management.

Usually, the invoice is created after it has been confirmed
that the goods were delivered or the service was provided. The
invoicing party (such as the seller) starts the invoicing process
by sending an InvoiceRequest message. Upon receiving the
InvoiceRequest message, the invoice recipient (for instance,
the buyer) can use the InvoiceConfirmation message to com-
pletely accept or reject the invoice received or to temporarily
assign it the status “pending.” The InvoiceConfirmation is not
a negotiation tool (as is the case in order management), since
the options available are either to accept or reject the entire
invoice. The invoice data in the InvoiceConfirmation message
merely confirms that the invoice has been forwarded correctly
and does not communicate any desired changes to the invoice.
Therefore, the InvoiceConfirmation includes the precise
invoice data that the invoice recipient received and checked. If
the invoice recipient rejects an invoice, the invoicing party
can send a new invoice after checking the reason for rejection
(AcceptanceStatus and ConfirmationDescription at Invoice
and Invoiceltem level). If the invoice recipient does not
respond, the invoice is generally regarded as being accepted
and the invoicing party can expect payment.

FIGS. 22A-F depict a flow diagram of the steps performed
by methods and systems consistent with the subject matter
described herein to generate an interface from the business
object model. Although described as being performed by a

10

15

20

25

30

35

40

45

50

55

60

65

42

computer, these steps may alternatively be performed manu-
ally, or using any combination thereof. The process begins
when the system receives an indication of a package template
from the designer, i.e., the designer provides a package tem-
plate to the system (step 2200).

Package templates specify the arrangement of packages
within a business transaction document. Package templates
are used to define the overall structure of the messages sent
between business entities. Methods and systems consistent
with the subject matter described herein use package tem-
plates in conjunction with the business object model to derive
the interfaces.

The system also receives an indication of the message type
from the designer (step 2202). The system selects a package
from the package template (step 2204), and receives an indi-
cation from the designer whether the package is required for
the interface (step 2206). If the package is not required for the
interface, the system removes the package from the package
template (step 2208). The system then continues this analysis
for the remaining packages within the package template (step
2210).

If, at step 2206, the package is required for the interface, the
system copies the entity template from the package in the
business object model into the package in the package tem-
plate (step 2212, FIG. 22B). The system determines whether
there is a specialization in the entity template (step 2214). If
the system determines that there is a specialization in the
entity template, the system selects a subtype for the special-
ization (step 2216). The system may either select the subtype
for the specialization based on the message type, or it may
receive this information from the designer. The system then
determines whether there are any other specializations in the
entity template (step 2214). When the system determines that
there are no specializations in the entity template, the system
continues this analysis for the remaining packages within the
package template (step 2210, FIG. 22A).

At step 2210, after the system completes its analysis for the
packages within the package template, the system selects one
of the packages remaining in the package template (step
2218, F1G. 22C), and selects an entity from the package (step
2220). The system receives an indication from the designer
whether the entity is required for the interface (step 2222). If
the entity is not required for the interface, the system removes
the entity from the package template (step 2224). The system
then continues this analysis for the remaining entities within
the package (step 2226), and for the remaining packages
within the package template (step 2228).

If, at step 2222, the entity is required for the interface, the
system retrieves the cardinality between a superordinate
entity and the entity from the business object model (step
2230, FIG. 22D). The system also receives an indication of
the cardinality between the superordinate entity and the entity
from the designer (step 2232). The system then determines
whether the received cardinality is a subset of the business
object model cardinality (step 2234). If the received cardinal-
ity is not a subset of the business object model cardinality, the
system sends an error message to the designer (step 2236). If
the received cardinality is a subset of the business object
model cardinality, the system assigns the received cardinality
as the cardinality between the superordinate entity and the
entity (step 2238). The system then continues this analysis for
the remaining entities within the package (step 2226, FIG.
22C), and for the remaining packages within the package
template (step 2228).

The system then selects a leading object from the package
template (step 2240, FIG. 22E). The system determines
whether there is an entity superordinate to the leading object

US 9,400,998 B2

43

(step 2242). If the system determines that there is an entity
superordinate to the leading object, the system reverses the
direction of the dependency (step 2244) and adjusts the car-
dinality between the leading object and the entity (step 2246).
The system performs this analysis for entities that are super-
ordinate to the leading object (step 2242). If the system deter-
mines that there are no entities superordinate to the leading
object, the system identifies the leading object as analyzed
(step 2248).

The system then selects an entity that is subordinate to the
leading object (step 2250, FIG. 22F). The system determines
whether any non-analyzed entities are superordinate to the
selected entity (step 2252). If a non-analyzed entity is super-
ordinate to the selected entity, the system reverses the direc-
tion of the dependency (step 2254) and adjusts the cardinality
between the selected entity and the non-analyzed entity (step
2256). The system performs this analysis for non-analyzed
entities that are superordinate to the selected entity (step
2252). If the system determines that there are no non-ana-
lyzed entities superordinate to the selected entity, the system
identifies the selected entity as analyzed (step 2258), and
continues this analysis for entities that are subordinate to the
leading object (step 2260). After the packages have been
analyzed, the system substitutes the BusinessTransaction-
Document (“BTD”) in the package template with the name of
the interface (step 2262). This includes the “BTD” in the
BTDItem package and the “BTD” in the BTDItemSchedule-
Line package.

6. Use of an Interface

The XI stores the interfaces (as an interface type). At runt-
ime, the sending party’s program instantiates the interface to
create a business document, and sends the business document
in a message to the recipient. The messages are preferably
defined using XML. In the example depicted in FIG. 23, the
Buyer 2300 uses an application 2306 in its system to instan-
tiate an interface 2308 and create an interface object or busi-
ness document object 2310. The Buyer’s application 2306
uses data that is in the sender’s component-specific structure
and fills the business document object 2310 with the data. The
Buyer’s application 2306 then adds message identification
2312 to the business document and places the business docu-
ment into a message 2302. The Buyer’s application 2306
sends the message 2302 to the Vendor 2304. The Vendor 2304
uses an application 2314 in its system to receive the message
2302 and store the business document into its own memory.
The Vendor’s application 2314 unpacks the message 2302
using the corresponding interface 2316 stored in its XI to
obtain the relevant data from the interface object or business
document object 2318.

From the component’s perspective, the interface is repre-
sented by an interface proxy 2400, as depicted in FIG. 24. The
proxies 2400 shield the components 2402 of the sender and
recipient from the technical details of sending messages 2404
via XI. In particular, as depicted in FIG. 25, at the sending
end, the Buyer 2500 uses an application 2510 in its system to
call an implemented method 2512, which generates the out-
bound proxy 2506. The outbound proxy 2506 parses the
internal data structure of the components and converts them
to the XML structure in accordance with the business docu-
ment object. The outbound proxy 2506 packs the document
into a message 2502. Transport, routing and mapping the
XML message to the recipient 28304 is done by the routing
system (XI, modeling environment 516, etc.).

When the message arrives, the recipient’s inbound proxy
2508 calls its component-specific method 2514 for creating a
document. The proxy 2508 at the receiving end downloads

20

30

40

45

50

44

the data and converts the XML structure into the internal data
structure of the recipient component 2504 for further process-
ing.

As depicted in FIG. 26 A, a message 2600 includes a mes-
sage header 2602 and a business document 2604. The mes-
sage 2600 also may include an attachment 2606. For example,
the sender may attach technical drawings, detailed specifica-
tions or pictures of a product to a purchase order for the
product. The business document 2604 includes a business
document message header 2608 and the business document
object 2610. The business document message header 2608
includes administrative data, such as the message ID and a
message description. As discussed above, the structure 2612
of the business document object 2610 is derived from the
business object model 2614. Thus, there is a strong correla-
tion between the structure of the business document object
and the structure of the business object model. The business
document object 2610 forms the core of the message 2600.

In collaborative processes as well as Q& A processes, mes-
sages should refer to documents from previous messages. A
simple business document object ID or object ID is insuffi-
cient to identify individual messages uniquely because sev-
eral versions of the same business document object can be
sent during a transaction. A business document object ID with
a version number also is insufficient because the same version
of'abusiness document object can be sent several times. Thus,
messages require several identifiers during the course of a
transaction.

As depicted in FIG. 26B, the message header 2618 in
message 2616 includes a technical ID (“ID4”) 2622 that
identifies the address for a computer to route the message. The
sender’s system manages the technical ID 2622.

The administrative information in the business document
message header 2624 of the payload or business document
2620 includes a BusinessDocumentMessagelD (“ID3”)
2628. The business entity or component 2632 of the business
entity manages and sets the BusinessDocumentMessagelD
2628. The business entity or component 2632 also can refer to
other business documents using the BusinessDocumentMes-
sagelD 2628. The receiving component 2632 requires no
knowledge regarding the structure of this ID. The Business-
DocumentMessagelD 2628 is, as an ID, unique. Creation of a
message refers to a point in time. No versioning is typically
expressed by the ID. Besides the BusinessDocumentMes-
sagelD 2628, there also is a business document object 1D
2630, which may include versions.

The component 2632 also adds its own component object
1D 2634 when the business document object is stored in the
component. The component object ID 2634 identifies the
business document object when it is stored within the com-
ponent. However, not all communication partners may be
aware of the internal structure of the component object ID
2634. Some components also may include a versioning in
their ID 2634.

7. Use of Interfaces Across Industries

Methods and systems consistent with the subject matter
described herein provide interfaces that may be used across
different business areas for different industries. Indeed, the
interfaces derived using methods and systems consistent with
the subject matter described herein may be mapped onto the
interfaces of different industry standards. Unlike the inter-
faces provided by any given standard that do not include the
interfaces required by other standards, methods and systems
consistent with the subject matter described herein provide a
set of consistent interfaces that correspond to the interfaces
provided by different industry standards. Due to the different
fields provided by each standard, the interface from one stan-

US 9,400,998 B2

45

dard does not easily map onto another standard. By compari-
son, to map onto the different industry standards, the inter-
faces derived using methods and systems consistent with the
subject matter described herein include most of the fields
provided by the interfaces of different industry standards.
Missing fields may easily be included into the business object
model. Thus, by derivation, the interfaces can be extended
consistently by these fields. Thus, methods and systems con-
sistent with the subject matter described herein provide con-
sistent interfaces or services that can be used across different
industry standards.

For example, FIG. 28 illustrates an example method 2800
for service enabling. In this example, the enterprise services
infrastructure may offer one common and standard-based
service infrastructure. Further, one central enterprise services
repository may support uniform service definition, imple-
mentation and usage of services for user interface, and cross-
application communication. In step 2801, a business object is
defined via a process component model in a process modeling
phase. Next, in step 2802, the business object is designed
within an enterprise services repository. For example, FIG. 29
provides a graphical representation of one of the business
objects 2900. As shown, an innermost layer or kernel 2901 of
the business object may represent the business object’s inher-
ent data. Inherent data may include, for example, an employ-
ee’s name, age, status, position, address, etc. A second layer
2902 may be considered the business object’s logic. Thus, the
layer 2902 includes the rules for consistently embedding the
business object in a system environment as well as constraints
defining values and domains applicable to the business
object. For example, one such constraint may limit sale of an
item only to a customer with whom a company has a business
relationship. A third layer 2903 includes validation options
for accessing the business object. For example, the third layer
2903 defines the business object’s interface that may be inter-
faced by other business objects or applications. A fourth layer
2904 is the access layer that defines technologies that may
externally access the business object.

Accordingly, the third layer 2903 separates the inherent
data of the first layer 2901 and the technologies used to access
the inherent data. As a result of the described structure, the
business object reveals only an interface that includes a set of
clearly defined methods. Thus, applications access the busi-
ness object via those defined methods. An application want-
ing access to the business object and the data associated
therewith usually includes the information or data to execute
the clearly defined methods of the business object’s interface.
Such clearly defined methods of the business object’s inter-
face represent the business object’s behavior. That is, when
the methods are executed, the methods may change the busi-
ness object’s data. Therefore, an application may utilize any
business object by providing the information or data without
having any concern for the details related to the internal
operation of the business object. Returning to method 2800, a
service provider class and data dictionary elements are gen-
erated within a development environment at step 2803. In step
2804, the service provider class is implemented within the
development environment.

FIG. 30 illustrates an example method 3000 for a process
agent framework. For example, the process agent framework
may be the basic infrastructure to integrate business processes
located in different deployment units. It may support a loose
coupling of these processes by message based integration. A
process agent may encapsulate the process integration logic
and separate it from business logic of business objects. As
shown in FIG. 30, an integration scenario and a process com-
ponent interaction model are defined during a process mod-

10

15

20

25

30

35

40

45

50

55

60

65

46

eling phase in step 3001. In step 3002, required interface
operations and process agents are identified during the pro-
cess modeling phase also. Next, in step 3003, a service inter-
face, service interface operations, and the related process
agent are created within an enterprise services repository as
defined in the process modeling phase. In step 3004, a proxy
class for the service interface is generated. Next, in step 3005,
a process agent class is created and the process agent is
registered. In step 3006, the agent class is implemented within
a development environment.

FIG. 31 illustrates an example method 3100 for status and
action management (S&AM). For example, status and action
management may describe the life cycle of a business object
(node) by defining actions and statuses (as their result) of the
business object (node), as well as, the constraints that the
statuses put on the actions. In step 3101, the status and action
management schemas are modeled per a relevant business
object node within an enterprise services repository. In step
3102, existing statuses and actions from the business object
model are used or new statuses and actions are created. Next,
in step 3103, the schemas are simulated to verify correctness
and completeness. In step 3104, missing actions, statuses, and
derivations are created in the business object model with the
enterprise services repository. Continuing with method 3100,
the statuses are related to corresponding elements in the node
in step 3105. In step 3106, status code GDT’s are generated,
including constants and code list providers. Next, in step
3107, a proxy class for a business object service provider is
generated and the proxy class S&AM schemas are imported.
In step 3108, the service provider is implemented and the
status and action management runtime interface is called
from the actions.

Regardless of the particular hardware or software architec-
ture used, the disclosed systems or software are generally
capable of implementing business objects and deriving (or
otherwise utilizing) consistent interfaces that are suitable for
use across industries, across businesses, and across different
departments within a business in accordance with some or all
of the following description. In short, system 100 contem-
plates using any appropriate combination and arrangement of
logical elements to implement some or all of the described
functionality.

Moreover, the preceding flowcharts and accompanying
description illustrate example methods. The present services
environment contemplates using or implementing any suit-
able technique for performing these and other tasks. It will be
understood that these methods are for illustration purposes
only and that the described or similar techniques may be
performed at any appropriate time, including concurrently,
individually, or in combination. In addition, many of the steps
in these flowcharts may take place simultaneously and/or in
different orders than as shown. Moreover, the services envi-
ronment may use methods with additional steps, fewer steps,
and/or different steps, so long as the methods remain appro-
priate.

FIG. 32 illustrates an example object model for a Message-
Based Communication Arrangement business object 32000.
Specifically, the object model depicts interactions among
various components of the Message-Based Communication
Arrangement business object 32000, as well as external com-
ponents that interact with the Message-Based Communica-
tion Arrangement business object 32000 (shown here as
32002 through 32007 and 32014 through 32020). The Mes-
sage-Based Communication Arrangement business object
32000 includes elements 32008 through 32012 that can be
hierarchical, as depicted. For example, Message-Based Com-
munication Arrangement entity 32008 hierarchically

US 9,400,998 B2

47

includes zero or more Service Specification entities 32010
and zero or one Text Collection dependent object entities
32012. Some or all of the entities 32008 through 32012 can
correspond to packages and/or entities in the message data
types described below.

The business object Message-Based Communication
Arrangement is an arrangement that includes communication
settings for message-based communication between a com-
pany and a communication partner. The Message-Based
Communication Arrangement business object belongs to the
process component Communication Services Management.
The Message-Based Communication Arrangement business
object belongs to the deployment unit Foundation. The Mes-
sage-Based Communication Arrangement business object
can include two main components. A first component, Root,
can include information about a company and communica-
tion partner and a used communication scenario. A second
component, Service Specification, can include detailed infor-
mation about each message that is part of a communication
scenario and a specification such as user/password or URL. In
some implementations, for each message-based communica-
tion arrangement between two partners, only one communi-
cation scenario is valid. The business object Message-Based
Communication Arrangement has an object category of Mas-
ter Data Object and a technical category of Standard Business
Object.

A Message-Based Communication Arrangement Root
Node represents a specification of an arrangement between
two partners about a communication scenario with supple-
mentary information. The elements located directly at the
node Message-Based Communication Arrangement are
defined by the inline structure: /DOC/MBCA_ELEMENTS.
These elements include: UUID, MessageCommunication-
ProfileGroupKey, CompanyUUID, Companyidentifier Type-
Code, PartnerUUID, PartneridentifierTypeCode, Contact-
PersonUUID,
CommunicationSystemParticipatingBusinessSystemUUID,
CommunicationCredentialsUUID, PartyCommunication-
ProfileCode, SystemAdministrativeData, Status, and Key.

UUID may be an alternative key, is a globally unique
identifier for a message-based communication arrangement,
and may be based on datatype GDT: UUID. MessageCom-
municationProfileGroupKey is a key of a MessageCommu-
nicationProfileGroup which groups various MessageCom-
municationProfiles to a business scenario supported by a
messaged based communication, and may be based on
datatype KDT: MetaObjectKey. MessageCommunication-
ProfileGroupKey may include MessageCommunicationPro-
fileGroupKey/ProxyName, which is a proxy name of a meta
object, and may be based on datatype GDT: MetaObjectProx-
yName. The meta object may be a defined message commu-
nication profile group with meaning, structure and values
oriented on industry standards, where available. Company-
UUID is a globally unique identifier of a company for which
amessage-based communication arrangement is defined, and
may be based on datatype GDT: UUID. Companyidentifier-
TypeCode may be optional, is a coded representation of a type
of party identifier that can be used to identify a company, and
may be based on datatype GDT: PartyidentifierTypeCode.
The type of a party identifier can be determined by an issuing
agency, for example Dun & Bradstreet or France, and a
scheme, for example DUNS or ID card FR. A value of a code
can be, for example, “BUP001” for a Dun & Bradstreet num-
ber. PartnerUUID is a universally unique identifier of a com-
munication partner party for which a message-based commu-
nication arrangement is defined, and may be based on
datatype GDT: UUID.

10

15

20

25

30

35

40

45

50

55

60

65

48

PartneridentifierTypeCode may be optional, is acoded rep-
resentation of a type of party identifier to identify a commu-
nication partner, and may be based on datatype GDT: Partyi-
dentifierTypeCode. The type of a party identifier can be
determined by an issuing agency, for example Dun & Brad-
street or France, and a scheme for example DUNS or ID card
FR. ContactPersonUUID may be optional, is a unique iden-
tifier for a contact person of a communication partner for a
message-based communication arrangement, and may be
based on datatype GDT: UUID. CommunicationSystemPar-
ticipatingBusinessSystemUUID is a globally unique identi-
fier for a participating business system of a communication
system, and may be based on datatype GDT: UUID. Com-
municationCredentialsUUID may be optional, and may be
based on datatype GDT: UUID. PartyCommunicationProfi-
leCode may be optional, and may be based on datatype GDT:
PartyCommunicationProfileCode. SystemAdministrative-
Data includes administrative data that is stored in a system,
such as system users and change dates/times, and may be
based on datatype GDT: System AdministrativeData. Status is
a life cycle status of a message-based communication
arrangement and may be based on datatype GDT: Message-
BasedCommunicationArrangementStatus. Key may be an
alternative key, is a unique key of a message-based commu-
nication arrangement, and may be based on datatype KDT:
MessageBasedCommunicationArrangementKey. Key may
include Key/MessageCommunicationProfileGroupKey,
which may be based on datatype KDT: MetaObjectKey. Key
may include Key/MessageCommunicationProfileGroupKey/
ProxyName, which is a proxy name of a meta object, and may
be based on datatype GDT: MetaObjectProxyName. Key
may include Key/CompanyUUID, which may be based on
datatype GDT: UUID. Key may include Key/PartnerUUID,
which may be based on datatype GDT: UUID. Key may
include Key/CommunicationSystemParticipa-
tingBusinessSystemUUID, which may be based on datatype
GDT: UUID.

The following composition relationships to subordinate
nodes exist: Service Specification, with a cardinality of 1:CN.
The following composition relationships to dependent
objects exist: TextCollection, with a cardinality of 1:C. The
following inbound aggregation relationships may exist: Com-
munication Credentials, from the business object Communi-
cation Credentials/node Root, with a cardinality of C:CN;
Company, from the business object Company/node Organi-
sational Centre, with a cardinality of C:CN, which is a com-
pany for which a message-based communication arrange-
ment is defined; Partner, from the business object Party/node
Party, with a cardinality of C:CN, which is a communication
partner party for which a message-based communication
arrangement is defined. The following inbound association
relationships may exist: Last Change Identity, from the busi-
ness object Identity/node Identity, with a cardinality of 1:CN,
which is an identity of a user who last changed a Message-
Based Communication Arrangement root node; and Creation
Identity, from the business object Identity/node Identity, with
a cardinality of 1:CN, which is an identity of a user who
created a Message-Based Communication Arrangement root
node. The following specialization associations for naviga-
tion may exist: Communication System Participating Busi-
ness System, to the business object Communication System/
node Participating Business System, with a target cardinality
of CN, which is a participating business system service of a
communication system; and Form Output, to the business
object Document Output Request/node Document Output
Request, with a target cardinality of CN.

US 9,400,998 B2

49

An Unblock action unblocks a business system service. A
precondition of the Unblock action can be that a message-
based communication arrangement has a LifeCycleStatus of
‘Blocked’. Changes to status resulting from the Unblock
action can include setting a LifecycleStatus to ‘Active’.

A Revoke Obsolescence action puts a message-based com-
munication arrangement back to status ‘Blocked’. A precon-
dition of the Revoke Obsolescence can be that the message-
based communication arrangement has a LifeCycleStatus of
‘Obsolete’. Changes to status resulting from the Revoke
Obsolescence action can include setting a LifecycleStatus to
‘Blocked’.

A Flag As Obsolete action flags a message-based commu-
nication arrangement as obsolete. Preconditions of the Flag
As Obsolete action can include the Message-based commu-
nication arrangement having a LifeCycleStatus of ‘Active’ or
‘Blocked’. Changes to status resulting from the Flag As
Obsolete action can include the setting a LifecycleStatus to
‘Obsolete’.

A Block action blocks a message-based communication
arrangement. Preconditions of the Block action can include
the Message-based communication arrangement having a
LifeCycleStatus of “‘Active’. Changes to status resulting from
the Block action can include setting a LifecycleStatus to
‘Blocked.

An Activate action activates a message-based communica-
tion arrangement. Preconditions of the Activate action can
include the message-based communication arrangement
being consistent and having a LifeCycleStatus of ‘In Prepa-
ration’. Changes to status resulting from the Activate action
can include the setting of a LifecycleStatus to ‘Active’.

A Ping action can be used to test a reachability of hosts on
an Internet Protocol (IP) network configured on service speci-
fication nodes. A Check action can be used to check the
configuration of a whole business object instance. Other
actions that may exist include Redeploy, Modify Service
Specification From Default, Isolate, and Delsolate.

A Select All query can be used to return the node IDs of all
instances of the node and can be used to enable an initial load
of data for a Fast Search Infrastructure. A Query by Elements
query can be used to return a list of all Message Based Com-
munication Arrangements according to specified selection
elements. The query elements are defined by the inline struc-
ture: /DOC/MBCA_S_QUERY_ELEMENTS. These ele-
ments include: MessageCommunicationProfileGroupKey,
MessageCommunicationProfileGroupShortText, Message-
CommunicationProfileGroupTypeCode, CompanyUUID,
CompanyidentifierTypeCode, PartnerUUID, Partneridentifi-
erTypeCode, PartnerName, PartnerID, CommunicationSys-
temParticipatingBusinessSystemServiceUUID, PartyCom-
municationProfileCode, CommunicationSystemlID,
CommunicationSystemParticipatingBusinessSystemlID,
SystemAdministrativeData, Status, SearchText, Service-
SpecificationMessageCommunicationProfileKey, Service-
SpecificationConfiguredInboundServicelnterfaceKey, Ser-
viceSpecificationSemanticInboundServicelnterfaceKey,
ServiceSpecificationConfig-
uredOutboundServicelnterfaceKey, ServiceSpecificationSe-
manticOutboundServicelnterfaceKey, ServiceSpecification-
MessageCommunicationProfileCategoryCode,
ServiceSpecificationlnboundldentityID, ServiceSpecifica-
tionlnboundldentityUUID, and ServiceSpecificationlogi-
calPortName.

MessageCommunicationProfileGroupKey may be based
on datatype KDT: MetaObjectKey and may include Mes-
sageCommunicationProfileGroupKey/ProxyName, which is
a proxy name of a meta object which may be based on

10

15

20

25

30

35

40

45

50

55

60

65

50

datatype GDT: MetaObjectProxyName. MessageCommuni-
cationProfileGroupShortText may be based on datatype
GDT: LANGUAGEINDEPENDENT EXTENDED_Text.
MessageCommunicationProfileGroupTypeCode may be
based on datatype GDT: MessageCommunicationGroup-
TypeCode. CompanyUUID may be based on datatype GDT:
UUID. CompanyidentifierTypeCode may be based on
datatype GDT: PartyidentifierTypeCode. PartnerUUID may
be based on datatype GDT: UUID. PartneridentifierType-
Code may be based on datatype GDT: PartyidentifierType-
Code. PartnerName may be based on datatype GDT: LAN-
GUAGEINDEPENDENT_MEDIUM_Name. PartnerID
may be based on datatype GDT: BusinessPartnerID. Com-
municationSystemParticipat-
ingBusinessSystemServiceUUID may be based on datatype
GDT: UUID. PartyCommunicationProfileCode may be
based on datatype GDT: PartyCommunicationProfileCode.
CommunicationSystemID may be based on datatype GDT:
CommunicationSystemID CommunicationSystemParticipa-
tingBusinessSystemID may be based on datatype GDT:
CommunicationSystemParticipatingBusinessSystemID Sys-
temAdministrativeData may be based on datatype QueryIlDT:
QueryElementSystem AdministrativeData. SystemAdminis-
trativeData may include SystemAdministrativeData/Cre-
ationDateTime, SystemAdministrativeData/Creationldenti-
tyUUID, SystemAdministrativeData/CreationldentitylD,
SystemAdministrativeData/CreationldentityBusinessPart-
nerlnternallD, SystemAdministrativeData/Creationldentity-
BusinessPartnerPersonFamilyName, System Administrative-
Data/CreationldentityBusinessPartnerPersonGivenName,
SystemAdministrativeData/CreationldentityEmployeelD,

SystemAdministrativeData/LastChangeDateTime, Syste-
mAdministrativeData/LastChangeldentityUUID, Syste-
mAdministrativeData/LastChangeldentitylD, SystemAd-

ministrativeData/
LastChangeldentityBusinessPartnerInternallD,
SystemAdministrativeData/LastChangeldentityBusiness-
PartnerPersonFamilyName, SystemAdministrativeData/
LastChangeldentityBusinessPartnerPersonGivenName, and
SystemAdministrativeData/LastChangeldentityEmploy-
eelD.

SystemAdministrativeData/CreationDateTime is a point
in time date and time stamp of a creation, and may be based on
datatype GDT: GLOBAL_DateTime. SystemAdministra-
tiveData/CreationldentityUUID is a globally unique identi-
fier for an identity who performed a creation, and may be
based on datatype GDT: UUID. SystemAdministrativeData/
CreationldentityID is an identifier for an identity who per-
formed a creation, and may be based on datatype GDT: Iden-
tityID. SystemAdministrativeData/
CreationldentityBusinessPartnerInternallD is an identifier
for a business partner that is attributed to a creation identity
and that can be reached following relationships of the creation
identity, and may be based on datatype GDT: BusinessPart-
nerlnternallD. SystemAdministrativeData/Creationldentity-
BusinessPartnerPersonFamilyName is a family name of a
business partner of a category person that is attributed to a
creation identity and that can be reached following relation-
ships of the creation identity, and may be based on datatype
GDT: LANGUAGEINDEPENDENT_MEDIUM_Name.
SystemAdministrativeData/CreationldentityBusinessPart-
nerPersonGivenName is a given name of a business partner of
the category person that is attributed to a creation identity and
that can be reached following relationships of the creation
identity, and may be based on datatype GDT: LANGUAGE-
INDEPENDENT_MEDIUM_Name. SystemAdministra-
tiveData/CreationldentityEmployeelD is an identifier for an

US 9,400,998 B2

51

employee that is attributed to a creation identity and that can
be reached following relationships of the creation identity,
and may be based on datatype GDT: EmployeelD. Syste-
mAdministrativeData/LastChangeDateTime is a point in
time date and time stamp of a last change, and may be based
on datatype GDT: GLOBAL_DateTime. SystemAdministra-
tiveData/LastChangeldentityUUID is a globally unique iden-
tifier for an identity who performed last changes, and may be
based on datatype GDT: UUID. SystemAdministrativeData/
LastChangeldentityID is an identifier for an identity who
performed last changes, and may be based on datatype GDT:
IdentityID. SystemAdministrativeData/LastChangeldentity-
BusinessPartnerInternallD is an identifier for a business part-
ner that is attributed to a last change identity and that can be
reached following relationships of the last change identity,
and may be based on datatype GDT: BusinessPartnerInter-
nallD. SystemAdministrativeData/LastChangeldentityBusi-
nessPartnerPersonFamilyName is a family name of a busi-
ness partner of a category person that is attributed to a last
change identity and that can be reached following relation-
ships of the last change identity, and may be based on datatype
GDT: LANGUAGEINDEPENDENT_MEDIUM_Name.
SystemAdministrativeData/LastChangeldentityBusiness-
PartnerPersonGivenName is a given name of a business part-
ner of a category person that is attributed to a last change
identity and that can be reached following relationships of the
last change identity, and may be based on datatype GDT:
LANGUAGEINDEPENDENT _MEDIUM_Name. Syste-
mAdministrativeData/LastChangeldentityEmployeelD is an
identifier for an employee that is attributed to a last change
identity and that can be reached following relationships of the
last change identity, and may be based on datatype GDT:
EmployeelD.

Status may be based on datatype GDT: MessageBased-
CommunicationArrangementStatus. SearchText may be
based on datatype GDT: SearchText. ServiceSpecification-
MessageCommunicationProfileKey may be based on
datatype KDT: MetaObjectKey. ServiceSpecificationMes-
sageCommunicationProfileKey/ProxyName is a proxy name
of a meta object, and may be based on datatype GDT:
MetaObjectProxyName. ServiceSpecificationConfig-
uredInboundServicelnterfaceKey may be based on datatype
KDT: MetaObjectKey and may include ServiceSpecifica-
tionConfiguredInboundServicelnterfaceKey/ProxyName,
which is a proxy name of a meta object which may be based
on datatype GDT: MetaObjectProxyName. ServiceSpecifi-
cationSemanticlnboundServicelnterfaceKey may be based
on datatype KDT: MetaObjectKey and may include Service-
SpecificationSemanticInboundServicelnterfaceKey/Prox-
yName, which is a proxy name of a meta object which may be
based on datatype GDT: MetaObjectProxyName. Service-
SpecificationConfiguredOutboundServicelnterfaceKey may
be based on datatype KDT: MetaObjectKey and may include
ServiceSpecificationConfig-
uredOutboundServicelnterfaceKey/ProxyName, which is a
proxy name of a meta object which may be based on datatype
GDT: MetaObjectProxyName. ServiceSpecificationSeman-
ticOutboundServicelnterfaceKey may be based on datatype
KDT: MetaObjectKey and may include ServiceSpecifica-
tionSemanticOutboundServicelnterfaceKey/ProxyName,
which is a proxy name of a meta object which may be based
on datatype GDT: MetaObjectProxyName. ServiceSpecifi-
cationMessageCommunicationProfileCategoryCode may be
based on datatype GDT: PartyCommunicationProfileCode.
ServiceSpecificationlnboundldentityID may be based on
datatype GDT: IdentityID. ServiceSpecificationInbound-
IdentityUUID may be based on datatype GDT: UUID. Ser-

10

15

20

25

30

35

40

45

50

55

60

65

52
viceSpecificationl.ogicalPortName may be based on
datatype GDT: LANGUAGEINDEPENDENT _

MEDIUM_Name.

Service Specification includes technical information of a
service specified within a message-based communication
arrangement. The elements located directly at the node Ser-
vice Specification are defined by the inline structure: /DOC/
MBCA_SERVICE_SPEC_ELMTS. These elements
include: UUID, MessageCommunicationProfileKey, Mes-
sageCommunicationProfileCategoryCode, Inboundldentity-
UUID, InboundldentityID, CommunicationCredentials-
UUID, PasswordID, CertificateIDText, LogicalPortName,
ConfiguredInboundServicelnterfaceKey, SemanticInbound-
ServicelnterfaceKey, ConfiguredOutboundService-
InterfaceKey, SemanticOutboundServicelnterfaceKey, Sys-
temAdministrativeData,
ComputerNetworkCommunicationProtocolCode, UsedIndi-
cator, InboundIndicator, SystemAuthenticationModeCode,
BasicAuthenticationEnabledIndicator, CertificateAuthenti-
cationEnabledIndicator, TicketAuthenticationEnabled-
Indicator, DefaultIndicator, DefaultUsedIndicator, WebURI-
DocumentPathName, TCPPortID, ClientID, HostName,
UserName, and Status.

UUID may be optional, may be an alternative key, and may
be based on datatype GDT: UUID. MessageCommunication-
ProfileKey may be based on datatype KDT: MetaObjectKey
and may include MessageCommunicationProfileKey/Prox-
yName, which is a proxy name of'a meta object which may be
based on datatype GDT: MetaObjectProxyName. Message-
CommunicationProfileCategoryCode may be optional, is a
category of a message communication profile, and may be
based on datatype GDT: MessageCommunicationProfile-
CategoryCode. A message communication profile category
represents a message standard and/or a message protocol of a
communication. A value of a MessageCommunicationProfi-
leCategoryCode can be, for example, “IDOC”, “XI”, or
“SOAP”. InboundldentityUUID may be optional, is a univer-
sally unique identifier of an identity which is used to authen-
ticate in a case of inbound message processing, may be based
on datatype GDT: UUID, and may be an identifier of identity
that is used to logon to a business partner for inbound B2B
(Business to Business) communication. InboundldentityIlD
may be optional, is a unique identifier for an identity which is
used to authenticate in a case of inbound message processing,
may be based on datatype GDT: IdentityID, and may be an
identifier for an identity that is used to logon to a business
partner for inbound B2B communication. Communication-
CredentialsUUID may be optional, is a globally unique iden-
tifier for communication credentials which are used to
authenticate in a case of inbound message processing, may be
based on datatype GDT: UUID, and may be an identifier for
a set of communication credentials belonging to a business
partner or a communication system. Types of credentials can
be, for example, passwords, X.509 Certificates, SAML,
Oauth credentials etc. PasswordID may be optional, is an
identifier for a password stored with a repository, may be
based on datatype GDT: PasswordID, and may be used for
inbound communication. CertificateIDText may be optional,
is a unique identifier of a certificate that is used for authenti-
cation in a remote system, may be based on datatype GDT:
LANGUAGEINDEPENDENT _Text, and may be used for
outbound communication. LogicalPortName may be
optional, is an identifier for a logical port, may be based on
datatype GDT: LANGUAGEINDEPENDENT _
MEDIUM_Name, and may be used for outbound communi-
cation.

US 9,400,998 B2

53

ConfiguredInboundServicelnterfaceKey may be optional,
is a name of service interface used by a web service runtime
to enable point-to-point communication, and may be based on
datatype KDT: MetaObjectKey. ConfiguredInboundService-
InterfaceKey may include ConfiguredInboundService-
InterfaceKey/ProxyName, which may be optional, is a proxy
name of a meta object, and may be based on datatype GDT:
MetaObjectProxyName. SemanticlnboundServicelnter-
faceKey may be optional, is a name of a semantic service
interface for which a communication is defined, and may be
based on datatype KDT: MetaObjectKey. Semanticlnbound-
ServicelnterfaceKey may include SemanticInboundService-
InterfaceKey/ProxyName, which may be optional, is a proxy
name of a meta object, and may be based on datatype GDT:
MetaObjectProxyName. ConfiguredOutboundService-
InterfaceKey may be optional, is a name of a service interface
used by a web service runtime to enable point-to-point com-
munication, and may be based on datatype KDT: MetaOb-
jectKey. ConfiguredOutboundServicelnterfaceKey —may
include ConfiguredOutboundServicelnterfaceKey/Prox-
yName, which may be optional, is a proxy name of a meta
object, and may be based on datatype GDT: MetaObjectProx-
yName. SemanticOutboundServicelnterfaceKey may be
optional, is a name of a semantic service interface for which
a communication is defined, and may be based on datatype
KDT: MetaObjectKey.

SemanticOutboundServicelnterfaceKey may include
SemanticOutboundServicelnterfaceKey/ProxyName, which
may be optional, is a proxy name of a meta object, and may be
based on datatype GDT: MetaObjectProxyName. SystemAd-
ministrativeData includes administrative data that is stored in
a system, such as system users and change dates/times, and
may be based on datatype GDT: SystemAdministrativeData.
ComputerNetworkCommunicationProtocolCode may be
optional, is a coded representation of a communication pro-
tocol of a computer network, may be used for outbound
communication, and may be based on datatype GDT: Com-
puterNetworkCommunicationProtocolCode. An example
value of a protocol code can be “https”. UsedIndicator indi-
cates whether a service specification is or was used for mes-
sage-based communication, and may be based on datatype
GDT: Indicator, with a qualifier of Used. UsedIndicator can
be set once when a status is set to active and if an action
“revoke irrelevance” is used in a later stage then UsedIndica-
tor can be used to set a status “block”, otherwise a status can
be set to “in preparation”. InboundIndicator is an indicator
that specifies whether a direction of a communication is
inbound, and may be based on datatype GDT: Indicator, with
a qualifier of Inbound. Transient information can be set in a
case of inbound communication. SystemAuthenticationMo-
deCode may be optional, is a coded representation of an
authentication mode, and may be based on datatype GDT:
SystemAuthenticationModeCode. Possible values for the
authentication mode can be SSL Client Certificate, or User-
name/Password. BasicAuthenticationEnabledIndicator is an
indicator that specifies whether basic authentication is
enabled, may be based on datatype GDT: Indicator, with a
qualifier of Enabled, and may be used for inbound commu-
nication. CertificateAuthenticationEnabledIndicator is an
indicator that specifies whether certificate authentication is
enabled, may be based on datatype GDT: Indicator, with a
qualifier of Enabled, and may be used for inbound commu-
nication. TicketAuthenticationEnabledIndicator is an indica-
tor that specifies whether ticket authentication is enabled,
may be based on datatype GDT: Indicator, with a qualifier of
Enabled, and may be used for inbound communication.
DefaultIndicator may be optional and may be based on

30

40

45

50

54

datatype GDT: Indicator, with a qualifier of Default. Defaul-
tUsedIndicator may be optional and may be based on
datatype GDT: Indicator, with a qualifier of Used. WebURI-
DocumentPathName may be optional, is a name of a path of
a document within a hierarchical structure followed by a
name of the document, may be based on datatype GDT:
LANGUAGEINDEPENDENT_Name, with a qualifier of
DocumentPath, and may be used for outbound communica-
tion. The DocumentPathName can be used to identify a docu-
ment on the Internet. Individual components of the path can
be separated by a “/”. An example path value is “/test/pro-
cess_PRE”. TCPPortID may be optional, is an identifier for a
TCP port of a service to be used within a Message-Based
Communication Arrangement, may be based on datatype
GDT: TCPPortID, and may be used for outbound communi-
cation. ClientID may be optional, is an identifier for a client,
may be based on datatype GDT: ClientID, and may be used
for outbound communication. HostName may be optional, is
a name of a host, and may be based on datatype GDT: LAN-
GUAGEINDEPENDENT_EXTENDED_Name. UserName
may be optional, is a username used to logon to a remote
system, may be based on datatype GDT: LANGUAGEINDE-
PENDENT_EXTENDED_Name, and may be used for out-
bound communication. Status is a life cycle status of a service
specification, and may be based on datatype BOIDT: Mes-
sageBasedCommunicationAr-
rangementServiceSpecificationStatus Status can include Sta-
tus/LifeCycleStatusCode, which may be based on datatype
GDT: MessageBasedCommunicationAr-
rangementServiceSpecificationlifeCycleStatusCode.

The following inbound association relationships may
exist: Inbound Identity, from the business object Identity/
node Identity, with a cardinality of C:CN, which is an Identity
which is used to authenticate in a case of inbound message
processing; Last Change Identity, from the business object
Identity/node Identity, with a cardinality of 1:CN, whichis an
identity of a user who last changed a Message-Based Com-
munication Arrangement Service Specification node; and
Creation Identity, from the business object Identity/node
Identity, with a cardinality of 1:CN, which is an identity of a
user who created a Message-Based Communication Arrange-
ment Service Specification node. The following specializa-
tion associations for navigation may exist to the node Mes-
sage-Based Communication Arrangement: Parent, with a
target cardinality of 1; and Root, with a target cardinality of 1.

An Unblock action unblocks a Message-Based Communi-
cation Arrangement Service Specification. Preconditions of
the Unblock action can include the Message-Based Commu-
nication Arrangement Service Specification having a LifeCy-
cleStatus of ‘Blocked’. Changes to status resulting from the
Unblock action can include the setting of a LifecycleStatus to
‘Active’.

A Revoke Obsolescence action puts a Message-Based
Communication Arrangement Service Specification back to
status ‘Blocked’. Preconditions of the Revoke Obsolescence
action can include the Message-Based Communication
Arrangement Service Specification having a LifeCycleStatus
of ‘Obsolete’. Changes to status resulting from the Revoke
Obsolescence action can include the setting of a Lifecy-
cleStatus to ‘Blocked’.

A Flag as Obsolete action flags a Message-Based Commu-
nication Arrangement Service Specification as obsolete. Pre-
conditions of the Flag as Obsolete action can include the
Message-Based Communication Arrangement Service
Specification having a LifeCycleStatus of ‘Active’ or

US 9,400,998 B2

55

‘Blocked’. Changes to status resulting from the Flag as Obso-
lete action can include the setting of a LifecycleStatus to
‘Obsolete’.

A Block action blocks a Message-Based Communication
Arrangement Service Specification. Preconditions of the
Block action can include the Message-Based Communica-
tion Arrangement Service Specification having a LifeCy-
cleStatus of ‘Active’. Changes to status resulting from the
Block action can include the setting of a LifecycleStatus to
‘Blocked’.

An Activate action activates a Message-Based Communi-
cation Arrangement Service Specification. Preconditions of
the Activate action can include the Message-Based Commu-
nication Arrangement Service Specification being consistent
and having a LifeCycleStatus of ‘In Preparation’. Changes to
status resulting from the Activate action can include the set-
ting of a LifecycleStatus to ‘Active’.

A Ping action can be used to test the reachability of a host
on an Internet Protocol network. A Check action checks the
configuration of a node select node. A Redeploy action trig-
gers a call to configure a communication for a selected service
specification. Other actions can include, for example, Mark as
Not Relevant and Revoke Irrelevance.

FIG. 33 illustrates one example logical configuration of a
Reporting Line Unit Replicate Request message 33000. Spe-
cifically, this figure depicts the arrangement and hierarchy of
various components such as one or more levels of packages,
entities, and data types, shown here as 33002 through 33014.
As described above, packages may be used to represent hier-
archy levels, and different types of cardinality relationships
among entities can be represented using different arrowhead
styles. Entities are discrete business elements that are used
during a business transaction. Data types are used to type
object entities and interfaces with a structure. For example,
the Reporting Line Unit Replicate Request message 33000
includes, among other things, the Reporting Line Unit Rep-
licate Request entity 33006. Accordingly, heterogeneous
applications may communicate using this consistent message
configured as such.

The message type Reporting Line Unit Replicate Request
is derived from the business object Organisational Centre
Replication Request as a leading object together with its
operation signature. The message type Reporting Line Unit
Replicate Request is a request to replicate reporting line units.
The structure of the message type Reporting Line Unit Rep-
licate Request is determined by the message data type Report-
ingl.ineUnitReplicateRequestMessage. The message data
type ReportinglineUnitReplicateRequestMessage includes
the MessageHeader package and the ReportinglineUnitRep-
licateRequest package. The package MessageHeader
includes the sub-packages Party and Business Scope, and the
entity MessageHeader. MessageHeader is typed by Business-
DocumentMessageHeader.

The package ReportinglineUnitReplicateRequest
includes the sub-package Reportingl.ineUnit and the entity
ReportinglineUnitReplicateRequest. ~ ReportinglineUni-
tReplicateRequest includes the following non-node ele-
ments: BusinessDocumentFileSourceBusinessSystemID,
BusinessDocumentFileName, and BusinessDocumentFi-
leCreationDateTime. BusinessDocumentFileSource-
BusinessSystemID may have a multiplicity of 1 and may be
based on datatype BGDT:CommunicationSystemParticipa-
tingBusinessSystemID. BusinessDocumentFileName may
have a multiplicity of 1 and may be based on datatype CDT:
LANGUAGEINDEPENDENT _MEDIUM_Name. Busi-
nessDocumentFileCreationDateTime may have a multiplic-
ity of 1 and may be based on datatype CDT:

5

10

15

20

25

30

35

40

45

55

60

65

56
GLOBAIL_DateTime. Reportingl.ineUnitReplicateRequest
includes the following node elements: Reportingl ineUnit, in
a 1:CN cardinality relationship.

The package ReportinglineUnitReplica-
teRequestReportinglineUnit includes the sub-packages
Name, UpperReportinglineUnit, and ManagerAssignment,
and the entity Reportingl.ineUnit. ReportinglineUnit
includes the following non-node elements: ValidityPeriod,
RemoteObjectID, and Deletelndicator. ValidityPeriod may
have a multiplicity of 0.1 and may be based on datatype
AGDT:CLOSED_DatePeriod. RemoteObjectID may have a
multiplicity of 0.1 and may be based on datatype BGDT:
NOCONVERSION_ObjectID. Deletelndicator may have a
multiplicity of 0.1 and may be based on datatype CDT:Indi-
cator. Reportingl.ineUnit includes the following node ele-
ments: Name, in a 1:CN cardinality relationship; UpperRe-
portinglineUnit, in a 1:CN cardinality relationship; and
ManagerAssignment, in a 1:CN cardinality relationship.

The package ReportinglineUnitReplica-
teRequestReportinglineUnitName includes the entity
Name. Name includes the following non-node elements:
ValidityPeriod and Name. ValidityPeriod may have a multi-
plicity of 0.1 and may be based on datatype AGDT:
CLOSED_DatePeriod. Name may have a multiplicity of 0.1
and may be based on datatype CDT:MEDIUM_Name.

The package ReportinglineUnitReplica-
teRequestReportinglineUnitUpperReportinglineUnit
includes the entity UpperReportingl.ineUnit. UpperReport-
inglineUnit includes the following non-node eclements:
ValidityPeriod and UpperReportingl.ineUnitRemo-
teObjectID. ValidityPeriod may have a multiplicity of 0.1 and
may be based on datatype AGDT:CLOSED_DatePeriod.
UpperReportingl.ineUnitRemoteObject]D may have a mul-
tiplicity of 0.1 and may be based on datatype BGDT:NO-
CONVERSION_ObjectID.

The package ReportinglineUnitReplica-
teRequestReportinglineUnitManagerAssignment includes
the entity ManagerAssignment. ManagerAssignment
includes the following non-node elements: ValidityPeriod
and AssignedManagerEmployeeRemoteObjectID. Validity-
Period may have a multiplicity of 0.1 and may be based on
datatype AGDT:CLOSED_DatePeriod. AssignedManager-
EmployeeRemoteObject]D may have a multiplicity
ot 0.1 and may be based on datatype BGDT:NOCONVER-
SION_ObjectID.

FIGS. 34-1 through 34-5 show an example configuration of
an Element Structure that includes a Reportingl.ineUnitRep-
licateRequest 34000 package. Specifically, these figures
depict the arrangement and hierarchy of various components
such as one or more levels of packages, entities, and
datatypes, shown here as 34000 through 34124. As described
above, packages may be used to represent hierarchy levels.
Entities are discrete business elements that are used during a
business transaction. Data types are used to type object enti-
ties and interfaces with a structure. For example, the Report-
ingl.ineUnitReplicateRequest 34000 includes, among other
things, a ReportinglineUnitReplicateRequest 34002.
Accordingly, heterogeneous applications may communicate
using this consistent message configured as such.

The ReportinglineUnitReplicateRequest 34000 package
is a ReportingLineUnitReplicateRequestMessage 34004 data
type. The ReportinglineUnitReplicateRequest 34000 pack-
age includes a Reportingl.ineUnitReplicateRequest 34002
entity. The ReportinglineUnitReplicateRequest 34000 pack-
age includes various packages, namely a MessageHeader
34006 and a Reportingl.ineUnitReplicateRequest 34014.

US 9,400,998 B2

57

The MessageHeader 34006 package is a BusinessDocu-
mentMessageHeader 34012 data type. The MessageHeader
34006 package includes a MessageHeader 34008 entity. The
MessageHeader 34008 entity has a cardinality of 1 34010
meaning that for each instance of the MessageHeader 34006
package there is one MessageHeader 34008 entity.

The ReportinglineUnitReplicateRequest 34014 package
is a Reportingl.ineUnitReplicateRequest 34020 data type.
The ReportinglineUnitReplicateRequest 34014 package
includes a ReportinglineUnitReplicateRequest 34016 entity.
The ReportinglineUnitReplicateRequest 34014 package
includes a Reportingl.ineUnit 34040 package. The Reportin-
glineUnitReplicateRequest 34016 entity has a cardinality of
134018 meaning that for each instance of the Reportingline-
UnitReplicateRequest 34014 package there is one Reportin-
glineUnitReplicateRequest 34016 entity. The Reportin-
glineUnitReplicateRequest 34016 entity includes various
attributes, namely a BusinessDocumentFileSource-
BusinessSystemID 34022, a BusinessDocumentFileName
34028 and a BusinessDocumentFileCreationDateTime
34034.

The BusinessDocumentFileSourceBusinessSystemID
34022 attribute is a CommunicationSystemParticipa-
tingBusinessSystemID 34026 data type. The BusinessDocu-
mentFileSourceBusinessSystemID 34022 attribute has a car-
dinality of 1 34024 meaning that for each instance of the
ReportinglineUnitReplicateRequest 34016 entity there is
one BusinessDocumentFileSourceBusinessSystemID 34022
attribute. The BusinessDocumentFileName 34028 attribute is
a LANGUAGEINDEPENDENT_MEDIUM_Name 34032
data type. The BusinessDocumentFileName 34028 attribute
has a cardinality of 1 34030 meaning that for each instance of
the ReportingLineUnitReplicateRequest 34016 entity there
is one BusinessDocumentFileName 34028 attribute. The
BusinessDocumentFileCreationDateTime 34034 attribute is
a GLOBAL _DateTime 34038 data type. The BusinessDocu-
mentFileCreationDateTime 34034 attribute has a cardinality
of 1 34036 meaning that for each instance of the Reportin-
glineUnitReplicateRequest 34016 entity there is one Busi-
nessDocumentFileCreationDateTime 34034 attribute.

The ReportinglineUnit 34040 package is a Reportin-
glineUnitReplicateRequestReportinglineUnit 34046 data
type. The Reportingl.ineUnit 34040 package includes a
ReportinglineUnit 34042 entity. The ReportinglineUnit
34040 package includes various packages, namely a Name
34066, an UpperReportinglineUnit 34086 and a Manager-
Assignment 34106. The Reportingl.ineUnit 34042 entity has
a cardinality of 0 . . . N 34044 meaning that for each instance
of'the Reportingl.ineUnit 34040 package there may be one or
more ReportinglineUnit 34042 entities. The Reportingl.ine-
Unit 34042 entity includes various attributes, namely a
ValidityPeriod 34048, a RemoteObjectID 34054 and a
DeleteIndicator 34060.

The ValidityPeriod 34048 attribute is a CLOSED_DateP-
eriod 34052 data type. The ValidityPeriod 34048 attribute has
a cardinality of 0. . . 1 34050 meaning that for each instance
of the ReportinglineUnit 34042 entity there may be one
ValidityPeriod 34048 attribute. The RemoteObjectID 34054
attribute is a NOCONVERSION_ObjectID 34058 data type.
The RemoteObject]D 34054 attribute has a cardinality
of 0 ... 1 34056 meaning that for each instance of the
ReportinglineUnit 34042 entity there may be one Remo-
teObjectID 34054 attribute. The Deletelndicator 34060
attribute is an Indicator 34064 data type. The Deletelndicator
34060 attribute has a cardinality of 0 .. . 1 34062 meaning that
for each instance ofthe Reportingl.ineUnit 34042 entity there
may be one Deletelndicator 34060 attribute.

25

30

35

40

45

58

The Name 34066 package is a ReportinglineUnitReplica-
teRequestName 34072 data type. The Name 34066 package
includes a Name 34068 entity. The Name 34068 entity has a
cardinality of 0. . . N 34070 meaning that for each instance of
the Name 34066 package there may be one or more Name
34068 entities. The Name 34068 entity includes various
attributes, namely a ValidityPeriod 34074 and a Name 34080.

The ValidityPeriod 34074 attribute is a CLOSED_DateP-
eriod 34078 data type. The ValidityPeriod 34074 attribute has
a cardinality of O . . . 1 34076 meaning that for each instance
of the Name 34068 entity there may be one ValidityPeriod
34074 attribute. The Name 34080 attribute is a
MEDIUM_Name 34084 data type. The Name 34080 attribute
has a cardinality of 0 . . . 1 34082 meaning that for each
instance of the Name 34068 entity there may be one Name
34080 attribute.

The UpperReportinglineUnit 34086 package is a Report-
ingl.ineUnitReplicateRequestUpperReportinglineUnit
34092 data type. The UpperReportingl.ineUnit 34086 pack-
age includes an UpperReportingl.ineUnit 34088 entity. The
UpperReportingl.ineUnit 34088 entity has a cardinality
of 0 ... N 34090 meaning that for each instance of the
UpperReportingl.ineUnit 34086 package there may be one or
more UpperReportingl.ineUnit 34088 entities. The Upper-
ReportinglineUnit 34088 entity includes various attributes,
namely a ValidityPeriod 34094 and an UpperReporting[.ine-
UnitRemoteObjectID 34100.

The ValidityPeriod 34094 attribute is a CLOSED_DateP-
eriod 34098 data type. The ValidityPeriod 34094 attribute has
a cardinality of O . . . 1 34096 meaning that for each instance
of the UpperReportinglineUnit 34088 entity there may be
one ValidityPeriod 34094 attribute. The UpperReportin-
glLineUnitRemoteObjectID 34100 attribute is a NOCON-
VERSION_ObjectID 34104 data type. The UpperReportin-
glLineUnitRemoteObjectID 34100 attribute has a cardinality
of 0 . .. 1 34102 meaning that for each instance of the
UpperReportinglineUnit 34088 entity there may be one
UpperReportingl.ineUnitRemoteObjectID 34100 attribute.

The ManagerAssignment 34106 package is a Reportin-
glineUnitReplicateRequestManagerAssignment 34112 data
type. The ManagerAssignment 34106 package includes a
ManagerAssignment 34108 entity. The ManagerAssignment
34108 entity has a cardinality of O . . . N 34110 meaning that
for each instance of the ManagerAssignment 34106 package
there may be one or more ManagerAssignment 34108 enti-
ties. The ManagerAssignment 34108 entity includes various
attributes, namely a ValidityPeriod 34114 and an Assigned-
ManagerEmployeeRemoteObject]D 34120.

The ValidityPeriod 34114 attribute is a CLOSED_DateP-
eriod 34118 data type. The ValidityPeriod 34114 attribute has
a cardinality of O . . . 1 34116 meaning that for each instance
of the ManagerAssignment 34108 entity there may be one
ValidityPeriod 34114 attribute. The AssignedManagerEm-
ployeeRemoteObjectID 34120 attribute is a NOCONVER-
SION_ObjectID 34124 data type. The AssignedManagerEm-
ployeeRemoteObjectID 34120 attribute has a cardinality
of 0 . .. 1 34122 meaning that for each instance of the
ManagerAssignment 34108 entity there may be one
AssignedManagerEmployeeRemoteObjectID 34120
attribute.

FIG. 35 illustrates an example object model for a Payment
Schedule business object 35000. Specifically, the object
model depicts interactions among various components of the
Payment Schedule business object 35000. External compo-
nents, including other business objects, can also interact with
the Payment Schedule business object 35000. The Payment
Schedule business object 35000 includes elements 35002

US 9,400,998 B2

59

through 35008 that can be hierarchical, as depicted. For
example, Payment Schedule entity 35002 hierarchically
includes zero or more Item entities 35004. Similarly, each
Item entity 35004 includes zero or more Item Schedule Line
entities 35006. Some or all of the entities 35002 through
35008 can correspond to packages and/or entities in the mes-
sage data types described below.

The business object Payment Schedule is a schedule for
processing payments with specifications concerning payment
dates and amounts to be paid. The Payment Schedule business
object belongs to the process component Schedule Data Man-
agement. The Payment Schedule business object belongs to
the deployment unit Foundation. The business object Pay-
ment Schedule has an object category of Business Transac-
tion Document and a technical category of Dependent Object.

The business object Payment Schedule can include a Root
node. The elements located directly at the node Payment
Schedule are defined by the data type PaymentScheduleEle-
ments. These elements include UUID, which may be an alter-
native key, is a universally unique identifier for a payment
schedule, and may be based on datatype GDT: UUID. A
filtered Item composition relationship can exist, with a cardi-
nality of 1:CN. The filter elements are defined by the inline
structure PSC_S _ITEM_FILTER. The filter elements can
include HostObjectUUID and HostObjectNodeTypeCode.
HostObjectUUID may be optional and may be based on
datatype GDT: UUID. HostObjectNodeTypeCode may be
optional and may be based on datatype GDT: ObjectNode-
TypeCode.

Item represents an item that is scheduled for payment. The
elements located directly at the node Item are defined by the
inline structure PSC_S_ITEM_EL. These elements include:
HostObjectNodeReference, UUID, TypeCode, Amount,
Period, and Status. HostObjectNodeReference may be
optional, is a reference to a host object node to which an item
belongs, and may be based on datatype GDT: ObjectNo-
deReference. UUID may be an alternative key, is a universally
unique identifier for an item, and may be based on datatype
GDT: UUID. TypeCode may be optional, is a coded repre-
sentation of a type of payment schedule item, and may be
based on datatype GDT: PaymentScheduleTypeCode.
Amount may be optional, is a total amount to be paid for an
item, and may be based on datatype GDT: Amount. Period
may be optional, is a period in which an amount is to be paid,
and may be based on datatype GDT: CLOSED_DatePeriod.
Status may be optional and may be based on datatype GDT:
PaymentScheduleltemStatus.

The following composition relationships to subordinate
nodes exist: [temSchedulel.ine, with a cardinality of 1:CN.
The following specialization associations for navigation may
exist to the node Payment Schedule: Parent, with a target
cardinality of 1; and Root, with a target cardinality of 1.

A Schedule action can be used to schedule an item for
payment. A Finish action can be used to finish a payment
schedule item. A Cancel action can be used to cancel a pay-
ment schedule item.

TtemScheduleLine is a schedule line specifying an amount
to be paid at a given date. The elements located directly at the
node ItemSchedulel.ine are defined by the inline structure
PSC_S_ITEM_SCHEDULE_LINE_EL. These elements
include: UUID, ScheduleLinelID, TypeCode, ProposedPay-
mentDate, Percent, Amount, AccountsPayableDueltem Type-
Code, and Status. UUID may be an alternative key, is a uni-
versally unique identifier for an item schedule line, and may
be based on datatype GDT: UUID. ScheduleLinelD may be
optional, is an identifier for a schedule line item, and may be
based on datatype GDT: BusinessTransactionDocument-

10

15

20

25

30

35

40

45

50

55

60

65

60

ItemScheduleLinelD. TypeCode may be optional, is a coded
representation of a type of item schedule line, for example,
installment or retainage, and may be based on datatype GDT:
PaymentScheduleltemScheduleLineTypeCode. Proposed-
PaymentDate may be optional, is a point in time that is pro-
posed for payment, and may be based on datatype GDT: Date.
Percent may be optional, is a percentage of an item amount
which is to be paid, and may be based on datatype GDT:
Percent. Amount may be optional, is an amount to be paid on
a proposed payment date, and may be based on datatype
GDT: Amount. AccountsPayableDueltemTypeCode may be
optional, is a coded representation of a type of accounts
payable due item, and may be based on datatype GDT:
AccountsPayableDueltem TypeCode. Status may be optional
and may be based on datatype GDT: ItemSchedulel.ineSta-
tus.

The following composition relationships to dependent
objects exist: Text Collection, with a cardinality of 1:CN. The
following specialization associations for navigation may
exist: Parent, to the node Item, with a target cardinality of 1;
and Root, to the node Payment Schedule, with a target cardi-
nality of 1. A Release action can be used to release a payment
schedule line for payment. A NotifyOfPayment action can be
used to notify of a payment.

A number of implementations have been described. Nev-
ertheless, it will be understood that various modifications
may be made without departing from the spirit and scope of
the disclosure. Accordingly, other implementations are
within the scope of the following claims.

What is claimed is:

1. A non-transitory computer readable medium including
program code for providing a message-based interface for
exchanging information about message-based communica-
tion arrangements, the medium comprising:

program code for receiving via a message-based interface

derived from a common business object model, where
the common business object model includes business
objects having relationships that enable derivation of
message-based interfaces and message packages, the
message-based interface exposing at least one service as
defined in a service registry and from a heterogeneous
application executing in an environment of computer
systems providing message-based services, a first mes-
sage for requesting a list of message-based communica-
tion arrangements corresponding to specified selection
elements, the first message including a first message
package hierarchically organized in memory based on
and derived from the common business object model,
the first message package including:
at a first hierarchical level in the first message package,
amessage-based communication arrangements query
by elements message entity; and
at the firsthierarchical level in the first message package,
a specified selection elements package including, at a
second hierarchical level in the first message package,
a specified selection elements entity, wherein the
specified selection elements entity includes, at a third
hierarchical level in the first message package, at least
one message communication profile group key, mes-
sage communication profile group short text, and at
least one message communication profile group type
code; and
program code for processing the first message based on the
hierarchical organization of the first message package,
where processing the first message includes unpacking
the first message package based on the hierarchical orga-
nization of the first message package, the specific group-

US 9,400,998 B2

61

ing and order of the hierarchical elements, and the first
message package’s derivation from the common busi-
ness object model, wherein the particular hierarchical
organization of the first message package and the spe-
cific grouping and order of the hierarchical elements are
used at least in part to identify the purpose of the first
message;

program code for sending a second message to the hetero-
geneous application responsive to the first message,
where the second message includes a second message
package derived from the common business object
model to provide consistent semantics with the first mes-
sage package.

2. The computer readable medium of claim 1, wherein the
specified selection elements entity further includes, at the
third hierarchical level in the first message package, at least
one of the following: a company universally unique identifier
(UUID), a company identifier type code, a partner UUID, a
partner identifier type code, a partner name, a partner identi-
fier (ID), a communication system participating business sys-
tem service UUID, a party communication profile code, a
communication system 1D, a communication system partici-
pating business system 1D, system administrative data, a sta-
tus, search text, a service specification message communica-
tion profile key, a service specification configured inbound
service interface key, a service specification semantic
inbound service interface key, a service specification config-
ured outbound service interface key, a service specification
semantic outbound service interface key, a service specifica-
tion message communication profile category code, a service
specification inbound identity ID, a service specification
inbound identity UUID, and a service specification logical
port name.

3. A distributed system operating in a landscape of com-
puter systems providing message-based services defined in a
service registry, the system comprising:

at least one processor operable to execute computer read-
able instructions embodied on non-transitory media;

a graphical user interface comprising computer readable
instructions executable by the at least one processor,
embedded on non-transitory media, for requesting a list
of message-based communication arrangements corre-
sponding to specified selection elements, the instruc-
tions using a request;

a first memory storing a user interface controller execut-
able by the at least one processor for processing the
request and involving a first message including a first

10

15

20

25

30

35

40

45

62

message package derived from a common business
object model, where the common business object model
includes business objects having relationships that
enable derivation of message-based service interfaces
and message packages, the first message package hier-
archically organized based on and derived from the com-
mon business object model, the hierarchical organiza-
tion of the first message package including:

at a first hierarchical level in the first message package,
amessage-based communication arrangements query
by elements message entity; and

at the firsthierarchical level in the first message package,
a specified selection elements package including, at a
second hierarchical level in the first message package,
a specified selection elements entity, wherein the
specified selection elements entity includes, at a third
hierarchical level in the first message package, at least
one message communication profile group key, mes-
sage communication profile group short text, and at
least one message communication profile group type
code; and

a second memory, remote from the graphical user interface,
storing a plurality of message-based service interfaces
executable by the at least one processor and derived from
the common business object model to provide consistent
semantics with messages derived from the common
business object model, wherein one of the message-
based service interfaces is operable to process the mes-
sage based on the hierarchical organization of the first
message package, where processing the message
includes unpacking the first message package based on
the hierarchical organization of the first message pack-
age, the specific grouping and order of the hierarchical
elements, and the first message package’s derivation
from the common business object model, wherein the
hierarchical organization of the message package and
the grouping and order of the hierarchical elements in
the message package are used at least in part to identify
the purpose of the message.

4. The distributed system of claim 3, wherein the first
memory is remote from the graphical user interface.

5. The distributed system of claim 3, wherein the first
memory is remote from the second memory.

#* #* #* #* #*

